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3D molecule generation

Point-clouds Voxel grids

zi|x, h)

» Molecules as point-clouds * Molecules as discrete atom densities

* SE(3)-equivariant GNN * Leverage success of denoising architectures in
computer vision

 Generation with diffusion models | o
* (eneration through neural empirical Bayes




e Intuition:

Condltlonal neural Emplrlcal Bayes

Goal sample from p(x \ 5) the dlstrlbutlon of Ilgands X glven pocket 5
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 Hard to sample X ~ p(x| &) (a)

* Easier to sample from

Y ~ p(y| &) = p(x| &) * N (0,6°L) (b)

(b) sample y
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e Intuition: ‘.‘. (c) estimate X . '

 Hard to sample X ~ p(x| &) (a)

* Easier to sample from

Y ~ p(y| &) = p(x| &) * N (0,6°L) (b)

(b) sample y

py &)

POl =y+0°V,logp|) |
jconditional version of (Miyasawa, 61) |

» Sample Y ~ p(y|&) (b) €——_
» Estimate x with E(X |y, &) (c) .

NEX|y,&) =(y|&) (Robbins, 56) |
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Condltlonal neural Emplrlcal Bayes

Goal sample from p(x \ cf) the dlstrlbutlon of Ilgands X glven pocket cf
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 Intuition: ‘.... (c) estimate X \ )-‘ " .‘.".
» Hard to sample X ~ p(x|&) (@ W B, . SRR
Only need the conditional Ieast-square estlmator (|e

- conditional denoiser) x(y | 5) to sample molecules' _

- Sample ¥ ~ p(y &) (b) <~
» Estimate x with E(X |y, &) (c)




Pocket atoms
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* Voxelized molecules:
« Atoms are Gaussian blobs in 3D, centered at atomic centers

 Each atom type at different grid channels (color)
. Ligand: x € R%, d,=7X64xX64%X64 (res. .251&)
. Pocket: £ € R%, d: =4X64X64X64 (res. .251&)

* Approximate conditional least-square estimator with neural
net. £, : R4 x R% — R%



Pocket atoms

McHONNEsHrMcEP Xy 16)
* Voxelized molecules: * Denoising objective:
» Atoms are Gaussian blobs in 3D, centered at atomic centers ming E o opie)e~n0.01,) XX + 06| E) — x||?

 Each atom type at different grid channels (color)

. Ligand: x € R%, d,=7X64xX64%X64 (res. .251&)
. Pocket: £ € R%, d: =4X64X64X64 (res. .251&)

* The conditional denoiser gives us:

1
. 8oV |S) = g(ﬁe(y |$) —y) = V,log p(y|¢S)

* Approximate conditional least-square estimator with neural
net. £, : R4 x R% — R%



Sampllng condltlonal walk-jump sampling (cCWJS)
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1.(initialize) Voxelize the pocket & and initialize Yo With noise

2.(walk) sample noisy ligands y, ~ p(y | £) with Langevin MCMC*
Vig1 =V T 5g9(yz | £)+ \V 20€, €~ /V(Oaldx)

3. generate clean sample at arbitrary step &
)?k —

4. \/oxel = atomic coords



Recovering atomic coordinates from voxel grids
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We use the same method as Pinheiro et al, 23



Examples of cWJS (single) chains
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* Baselines taken from (Guan et al. 2023).

Experimental results

* CrossDocked2020: 100k/100/100 pocket-ligand binding pairs for train/val/test.

 Metrics averaged over 10k generated samples.

VinaScore | VinaMin | VinaDock QED SA Diversity | #atoms/ |sec/ mol

avg. (J) | avg. (V) | avg. ({) | avg. (1) | avg. (1) | avg. (1) | molecule | avg. ({4 )
Reference -6.36 -6.71 -7.45 0.48 0.73 - 22.8 -
Pocket2Mol -5.14 -6.42 -7.15 0.56 0.74 0.69 17.7 25.44
TargetDiff -5.47 -6.64 -7.80 0.48 0.58 0.72 24.2 34.28
DecompDiff* -5.67 -7.04 -8.39 0.45 0.61 0.638 20.9 61.89
VoxBinds=0.9 -6.94 -7.54 -8.30 0.57 0.70 0.73 23.4 4.92
VoxBinds=1.0 -6.63 -7.12 -7.82 0.55 0.69 0.75 21.7 4.92




Experimental results

 PoseCheck metrics (Harris et al., 23)
* (left) Mean steric clashes for each model (I better).
* (right) Median strain energy (kcal/mol - UFF) of molecules on their generated pose (1 better).

 Metrics computed over 10k generated samples.
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* (right) Median strain energy (kcal/mol -

Experimental results

PoseCheck metrics (Harris et al., 23)

(left) Mean steric clashes for each model ({ better).

UFF) of molecules on their generated pose (1 better).

* Metrics computed over 10k generated samples
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Sampling efficiency

 From DecompDiff paper (Guan et al. ICML23):

For the sampling efficiency, AR, Pocket2Mol, GraphBP, and TargetDiff use 77835s, 2544s, 105s, and 3428s for generating

100 valid molecules on average separately. It takes DecompDiff 5570s / 6189s on average without / with validity guidance.
Similarly, the decomposed prior has a negligible impact on the sampling time. Bond diffusion results in 1.62x sampling
time compared to TargetDiff, and validity guidance makes the sampling time slightly increase by 10% further.



Sampling efficiency

 From DecompDiff paper (Guan et al. ICML23):

For the sampling efficiency, AR, Pocket2Mol, GraphBP, and TargetDiff use 7783s, 2544s, 105s, and 3428s for generating
100 valid molecules on average separately. It takes DecompDiff 5570s / 6189s on average without / with validity guidance.
Similarly, the decomposed prior has a negligible impact on the sampling time. Bond diffusion results in 1.62x sampling
time compared to TargetDiff, and validity guidance makes the sampling time slightly increase by 10% further.

' VoxBind takes ~500 sec / 100 valid samples!|



Conclusion

* New model for structure-based drug design inspired by computer vision
* Better results and faster sampling on standard benchmark

* Expressivity >> built-in SE(3) equivariance

* Code at: https://www.qgithub.com/genentech/voxbind
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https://www.github.com/genentech/voxbind

