

DFD: Distilling the Feature Disparity Differently for Detectors

 Kang Liu^{1,2}, Yingyi Zhang³, Jingyun Zhang², Jinmin Li², Jun Wang², Shaoming Wang², Chun Yuan¹, Rizen Guo²

1Tsinghua University, China; 2 Tencent WeChat Pay Lab33, China; 3 Tencent YouTu Lab, China

Motivation

Overview: DFD applies different treatments to regions with varying learning difficulties, simultaneously incorporating leniency and strictness, which enables better distillation efforts.

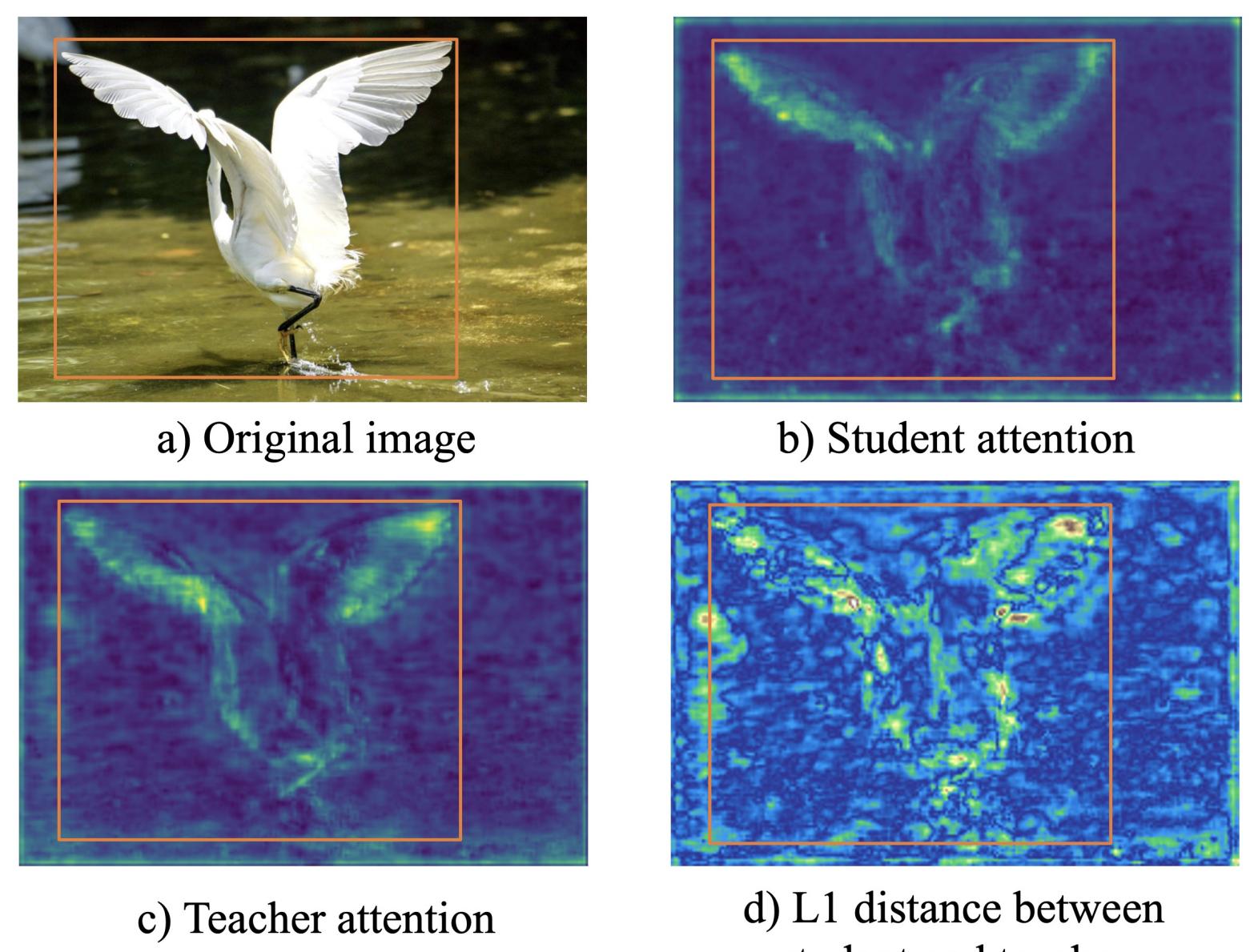


Figure 1. Visualization of spatial attention.

Table 1. Comparison of distillation on different regions.

Model	HD	LD	Split	DC	mAP
RetinaNet RX101	-	-	-	-	36.4
	✓	-	-	-	39.8
	-	✓	-	-	38.2
	✓	✓	-	-	39.6
	✓	✓	✓	-	40.0
	✓	✓	✓	✓	40.4 (Ours)

- **HD:** High disparity region
- **LD:** Low disparity region.
- **Split:** Split these regions, and use different weights for the distillation losses of different parts.
- **DC:** Using different constraints for different regions.

- **Knowledge Gap:** The feature disparity represents the varying capabilities of the models.
- **Distillation effort:** Using different distillation methods for different disparity regions can significantly enhance the distillation effect.

Methodology

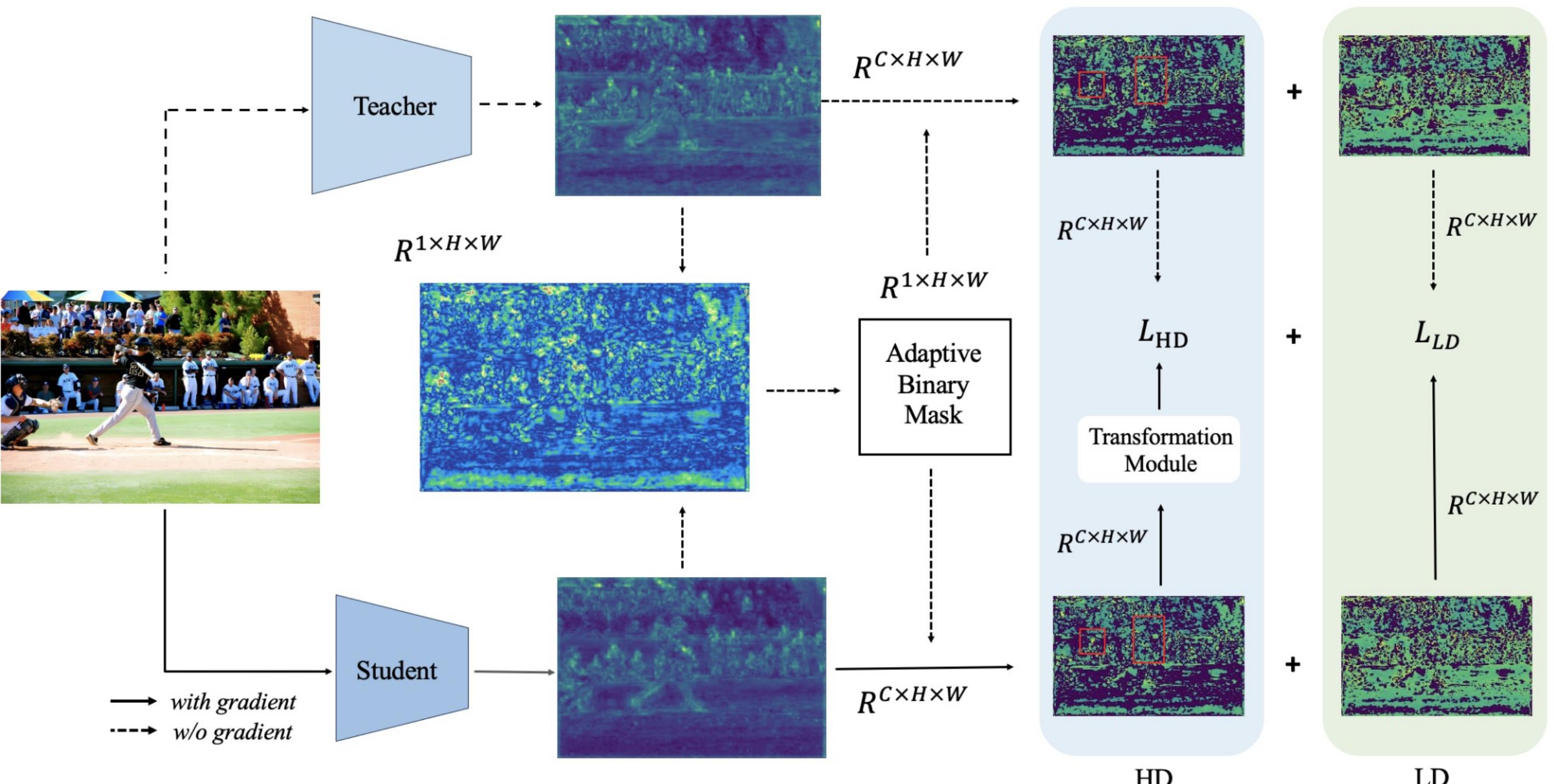


Figure 2: Overall architecture of DFD. We partition the feature into high disparity regions (HD) and low disparity regions (LD) by utilizing the mean L1 distance of spatial attention between the student and teacher as the threshold.

- Calculate the spatial attention:

$$A(F) = H \cdot W \cdot \text{softmax} \left(\frac{1}{C} \cdot \sum_{c=1}^C |F| \right)$$

- Calculate the attention disparity map:

$$D = |A(F^T) - A(F^S)|$$

- Generate adaptive binary mask:

$$Mask_{i,j} = \begin{cases} 0, & \text{if } D_{i,j} < P \\ 1, & \text{Otherwise} \end{cases}$$

- Distillation losses:

$$L_{LD} = \sum_k^C \sum_i^H \sum_j^W (F_{i,j,k}^T - F_{i,j,k}^S)^2, i, j \in R_{LD}$$

$$L_{HD} = \sum_k^C \sum_i^H \sum_j^W (F_{i,j,k}^T - f_{trans}(F_{i,j,k}^S))^2, i, j \in R_{HD}$$

$$L_{total} = L_{task} + \alpha \cdot L_{HD} + \beta \cdot L_{LD}$$

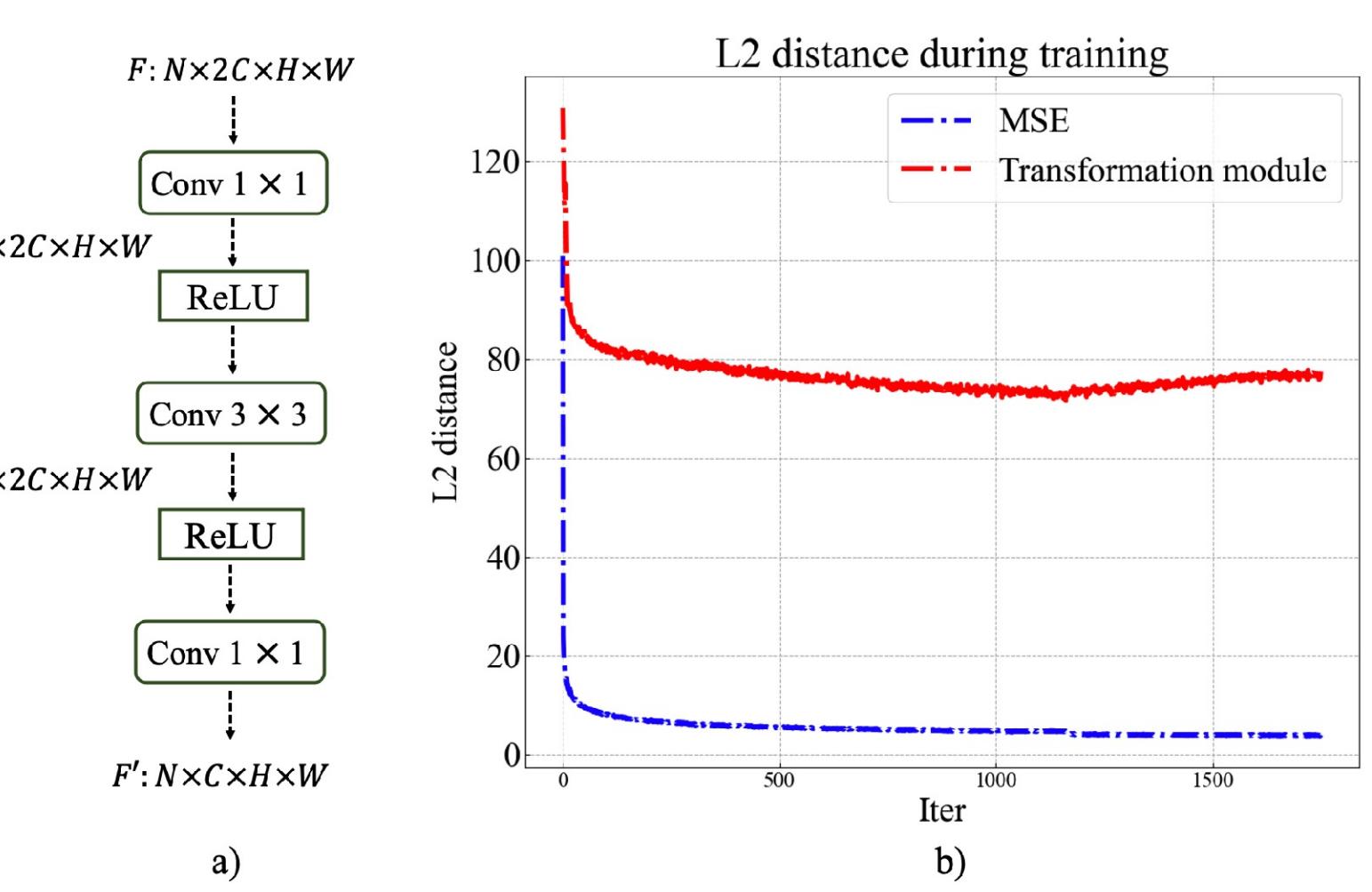


Figure 3. (a). The structure of the transformation module we used. (b). L2 distance during the training with transformation module.

Results and Ablation Study

Table 2. Main results on COCO dataset.

Teacher	Method	schedule	mAP	AP s	AP m	AP L
RetinaNet ResNext101	RetinaNet ResNet50	2x	37.4	20.0	40.7	49.7
	FGD	2x	40.9	23.1	45.1	54.9
	MGD	2x	41.2	23.6	45.3	54.6
	PKD	2x	41.2	23.0	45.4	55.6
	Ours	2x	41.7(+4.0)	24.4	46.0	55.7

Table 3. Experiments with progressively stronger teacher on COCO dataset.

Teacher	Method	Schedule	mAP
FasterRCNN R101	student	1x	37.4
	PKD	1x	39.6
	Ours	1x	39.7
FasterRCNN Rx101	PKD	1x	40.0
	Ours	1x	40.5
	TF	1x	42.2
MaskRCNN Rx101	PKD	1x	40.5
	Ours	1x	41.1
	TF	1x	42.7

Table 5. Using different constraints in different regions.

HD	LD	Schedule	mAP
MSE	MSE	1x	39.7
TF	TF	1x	40.2
TF	-	1x	39.4
RetinaNet RX101	MSE	TF	39.9
	TF	1x	39.9
	TF + MSE	1x	40.2
RetinaNet R50	TF	MSE	40.4
	MSE	1x	40.4

Table 4. combining DFD with other distillation methods.

Model	Method	Schedule	mAP
RetinaNet RX101	MGD	1x	40.0
	MGD + Ours	1x	40.3
	PKD	1x	39.9
RetinaNet R50	PKD + Ours	1x	40.3
	PKD + MGD	1x	39.9
	TF	MSE	40.4

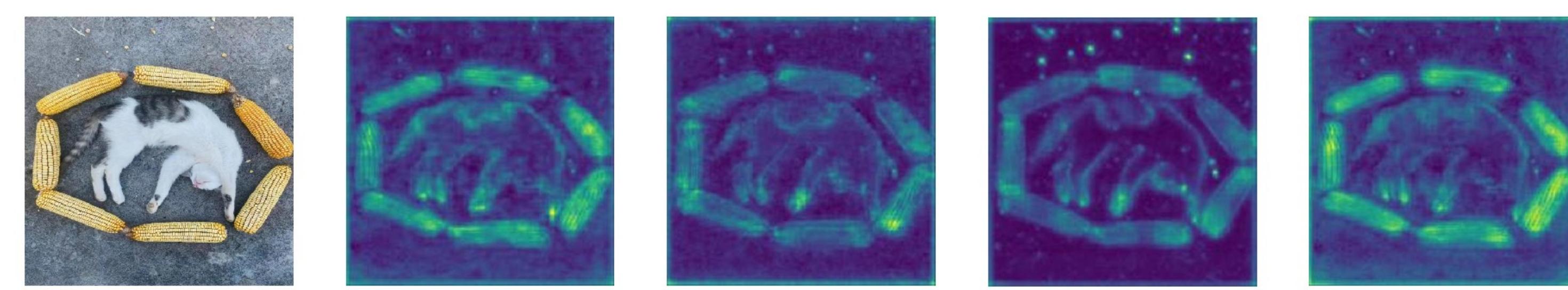


Figure 4. Visualization of spatial attention after distillation.

Table 6. Experiments of other detectors.

Method	Schedule	mAP
MaskRCNN-SwinS(Teacher)	1x	48.2
MaskRCNN-SwinT(Student)	1x	42.7
PKD	1x	43.9
Ours	1x	44.4
Method	Epoch	mAP
YOLOv6-Small(Teacher)	400	44.0
YOLOv6-Tiny(Student)	300	40.6
PKD	300	41.3
Ours	300	41.7

Table 7. Results of pose estimation on COCO-Body and segmentation on Cityscapes

Pose estimation	Method	Input Size	mAP
Heatmap Res50	Teacher	256 × 192	71.8
Heatmap MobileNetV2	student	256 × 192	62.0
Heatmap MobileNetV2	Ours	256 × 192	62.6
Segmentation	Method	Input Size	mAP
PspNet Res101	Teacher	512 × 512	78.34
PspNet Res18	student	512 × 512	69.85
PspNet Res18	CWD	512 × 512	73.53
PspNet Res18	Ours	512 × 512	73.74