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Background

O Protocol of the Online Learning problem:
Ateachround¢t=1,...,T"
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& (1) the learner submits a prediction 8, € O;
= 5!
(2) simultaneously, the environment picks loss f; : © — R;
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(3) the learner suffers loss f;(0;) and updates model.

[0 Previous Performance Measures:

Worst-case Dynamic Regret: compare with the function minimizers
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However: May lead to overfitting to sample randomness.
— Z(x,y)ESt E(y, XTH)
= E(x.4)~D, [{(y;x'0)] is our goal

» Consider online supervised learning with loss f;(8)
» Only obtain f;, but the expected F,(0)

Universal Dynamic Regret: compare with any comparators uy, . ..
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:> hold universally for arbitrary compa;ator sequence.
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However: typically need to deploy a two-layer online-ensemble [1].

» need to maintain multiple (= log(T))
base models, when using complex
models (such as DNNs),

may become computational costly.
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Our Measure: Underlying Dynamic Regret

Motivation: how to attain optimal dynamic regret
without deploying an ensemble of multiple base models?
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Underlying Dynamic Regret: compare with ground-truth minimizers

£ fu(6) =) fill)

where u; € O is the ground-truth comparator characterizing the
underlying distribution at round ¢.

Dynamic regret Dynamic regret
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Although 1, is not observable, we can obtain a noisy estimation u,

Assumption 1 (observation model). The learner observes uy satisfying

E[u,] = u;, with a bounded variance of o2,i.e., V[us] = % ||0; — 0|3 < o

» u, can be obtained by construct an unbiased estimator;

» Sufficiently general to encompass many real learning problem of
interest: online label/covariate shift, etc.;

» By focusing on the specific structure of the stochastic comparator,
we achieve a tight regret bound with a single-layer algorithm.

Method: Wavelet Detection-Restart Framework

O Overview of our framework:
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s Y O Z;+1: restart a new A

> “Denoise” the noisy observation u; to approximate uy;

»  Restart the algorithm once the abrupt changes are detected.

O Step 1: Detect environment non-stationarity based on wauvelets [2]:

Algorithm 1: Detection Module by Wavelets

Input: Restart threshold ~y; online algorithm .A.
Initialize: coefficient matrix a« = 0, time s = 1;

fort=1,...,T do

Update coefficient matrix o, ;) as Sec 3.2;

ifﬂ|(5 (as,g)lle > fy]then (y = 1/Variance)
l Restart the online algorlthm Aj;

Reset coefficient matrix o« = 0, set s =t + 1;
Output the prediction 6; using A;

Suffer loss f;(6;), observe u;, and update A4;

» Maintain only one learner A

> Maintain wavelet coefficients
of the empirical sequence {u;}

» Restart A once the norm of
coefficients exceed threshold

end

O Step 2: Efficiently calculate wavelet coefficients in an online manner:

Traditional Computation our Streaming Wavelet Operator

e Matrix multiplication as ;4 = W[I ATt e Use a binary indexed tree

’ e Only lazily update a portion of coeffi.
e Store all data, and recalculate all coeffi. Y , Y _p P , f ,
. e Only maintain the norm information
° O(T) complex1ty & ° O(log T) Comp]exity @y
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(a) traditional matrix computation (b) streaming wavelet operator

LAVIDA ¢ @ AP

Learning And Mining from DatA 3 5t jtf RIM=N

O Theoretical Guarantees of dynamic regret:

Theorem 1. With prob. atleast 1—-2/T', using our detection-restart frame-
work in Algorithm 1 with a A satisfying certain requirement, we have

»  for convex function: »  for exp-concave function:
Regl < O (T2 (PT)2k—i—3> Reg, < O <Tﬁ(p1’2)ﬁ>

where P} £ T*|| D**1qy; 1|1 is the k-th order path length (k > 0).

* Our method is flexible to accommodate higher—order (k-th order) path length:

Application: Online Label Shift [3]

O Setting: label distribution D, (y) changes over time,
and conditional D, (x | ¥) remains unchanged.

4 z )
Offline Initialization Online Adaptation O O ]
t=20 — 1 t — 2 t . 3 _unlabeled data
O s EI o M ’ A o |:| >
m_O w, > 4 |:| J— ( O O — ~—W
0 : L ST 7 : '~-_\Dr—" ? T round
n initial model
{Xi7 Yi 7;21 ~ Dg it {X'L} NDl_I_ {X’L} ND2 [ | {Xz}z 1 ~Ds _I_ )

O Apply our detection-restart framework to solve it:
(i) Get unbiased estimation using BBSE (previous label shift estimator);
(i) Maintain wavelet coefficients of the estimated label distribution;

(iii) Setting A as Reweighting or OGD, restart A it detecting changes.

Reweighting Update as A OGD Update as A
1 [ | ~
[ (%)]5 = Z2(x) DJ(Z ]: 7) [ho(x)];, Vi € [K] w1 =1hy|wy — VR (wy)], with s =1/v/t—s

Both achieving optimal dynamic regrets for online label shift.

Linear Shift

| Linear Square Square Shift
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(i) benchmark datasets with online label shift
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