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Background
p Protocol of theOnline Learning problem:

At each round t = 1, . . . , T :

(1) the learner submits a prediction θt ∈ Θ;

(2) simultaneously, the environment picks loss ft : Θ !→ R;

(3) the learner suffers loss ft(θt) and updates model.

p Previous Performance Measures:

Universal Dynamic Regret: compare with any comparators u1, . . . ,uT

hold universally for arbitrary comparator sequence.
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Worst-case Dynamic Regret: compare with the function minimizers
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However: typically need to deploy a two-layer online-ensemble [1].

However:May lead to overfitting to sample randomness.
Consider online supervised learning with loss ft(θ) =

∑
(x,y)∈St

!(y;x"θ)

Only obtain ft, but the expected Ft(θ) = E(x,y)∼Dt
[!(y;x"θ)] is our goal
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Ø need to maintain multiple (≈ log(𝑇))
base models, when using complex
models (such as DNNs),
may become computational costly.

Our Measure: Underlying Dynamic Regret

Worst-case
Dynamic regret

weaker stronger

Universal
Dynamic regret

Underlying
Dynamic regret

Motivation: how to attain optimal dynamic regret 
without deploying an ensemble of multiple base models?
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where
◦

ut ∈ Θ is the ground-truth comparator characterizing the
underlying distribution at round t.

Underlying Dynamic Regret: compare with ground-truth minimizers

Assumption 1 (observation model). The learner observes ũt satisfying

E[ũt] =
◦

ut, with a bounded variance of σ2, i.e.,V[ũt]=
1

d
‖ũt−

◦

ut‖22≤σ
2.

Ø

Ø Sufficiently general to encompass many real learning problem of
interest: online label/covariate shift, etc.;

Ø By focusing on the specific structure of the stochastic comparator, 
we achieve a tight regret bound with a single-layer algorithm.

Although
◦

ut is not observable, we can obtain a noisy estimation ũt

ũt can be obtained by construct an unbiased estimator;

Denoising-Based Dynamic Regret Methods 5

Theoretical Result (Conclusion)

Ii:

Ii+1:

run A

restart a new A

Ø

Ø Restart the algorithm once the abrupt changes are detected.

“Denoise” the noisy observation ũt to approximate
◦

ut;

Method: Wavelet Detection-Restart Framework
p Overview of our framework:

Traditional Computation

• O(T ) complexity ☹

• Matrix multiplication α̃[s,t] = W!

[s,t]ũ[s,t]

• Store all data, and recalculate all coeffi.

our Streaming Wavelet Operator
• Use a binary indexed tree

• Only lazily update a portion of coeffi.

• Only maintain the norm information

• O(log T ) complexity

p Step 2: Efficiently calculate wavelet coefficients in an online manner:

Ø

Ø

Ø

Maintain only one learner A

Maintain wavelet coefficients
of the empirical sequence {ũt}

Restart A once the norm of

coefficients exceed threshold

(𝛾 ≈ 1/Variance)

p Theoretical Guarantees of dynamic regret:
Theorem 1. With prob. at least 1−2/T , using our detection-restart frame-
work in Algorithm 1 with a A satisfying certain requirement, we have

Ø for convex function: Ø for exp-concave function:
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where P k
T ! T k‖Dk+1 ◦

u[1,T ]‖1 is the k-th order path length (k ≥ 0).

😁

p Step 1: Detect environment non-stationarity based onwavelets [2]:

Application: Online Label Shift [3]
p Setting:
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label distribution Dt(y) changes over time,
and conditional Dt(x | y) remains unchanged.

p Apply our detection-restart framework to solve it:

Both achieving optimal dynamic regrets for online label shift.

(i) Get unbiased estimation using BBSE (previous label shift estimator);
(ii) Maintain wavelet coefficients of the estimated label distribution;
(iii) Setting A as Reweighting or OGD, restart A if detecting changes.

Reweighting Update as A OGD Update as A

[ht(x)]j =
1

Z(x)

[µ̂t]j
D0(y = j)

[h0(x)]j , ∀j ∈ [K]
wt+1=ΠW [wt − ηt∇R̂t(wt)],with ηt=1/

√
t−s
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(i) synthetic OCO

(iii) real-world locomotion data

Ensemble
method

top-right is better

(iv) efficiency comparison

(ii) benchmark datasets with online label shift

(v) streaming
wavelet operator

* Our method is flexible to accommodate higher-order (k-th order) path length:
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Zeroth-order: First-order:


