

Efficient Non-stationary Online Learning by **Wavelets** with Applications to Online Distribution Shift Adaptation

Yu-Yang Qian, Peng Zhao, Yu-Jie Zhang, Masashi Sugiyama, Zhi-Hua Zhou

Background

Protocol of the Online Learning problem:

At each round $t = 1, \dots, T$:

- (1) the learner submits a prediction $\theta_t \in \Theta$;
- ↓
- (2) simultaneously, the environment picks loss $f_t : \Theta \mapsto \mathbb{R}$;
- ↓
- (3) the learner suffers loss $f_t(\theta_t)$ and updates model.

Previous Performance Measures:

Worst-case Dynamic Regret: compare with the function minimizers

$$\text{Reg}_T^d(\{f_t, \theta_t^*\}_{t=1}^T) \triangleq \sum_{t=1}^T f_t(\theta_t) - \sum_{t=1}^T f_t(\theta_t^*)$$

However: May lead to *overfitting* to sample randomness.

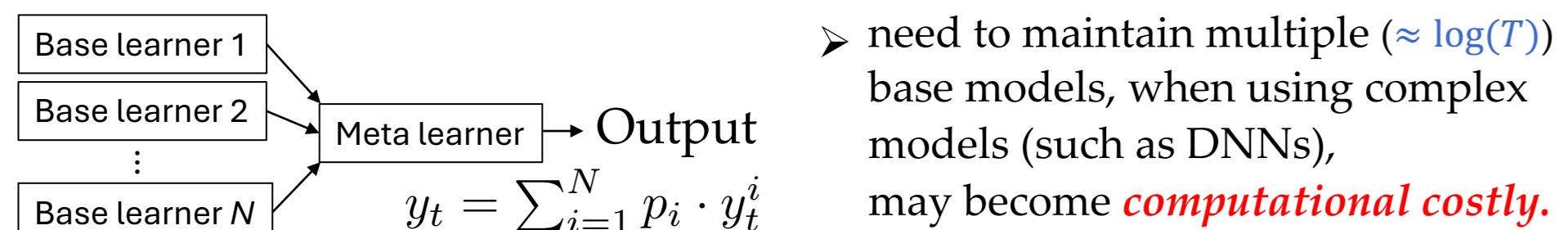
- Consider online supervised learning with loss $f_t(\theta) = \sum_{(x,y) \in S_t} \ell(y; x^\top \theta)$
- Only obtain f_t , but the *expected* $F_t(\theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}_t} [\ell(y; x^\top \theta)]$ is our goal

Universal Dynamic Regret: compare with *any* comparators $\mathbf{u}_1, \dots, \mathbf{u}_T$

$$\text{Reg}_T^d(\{f_t, \mathbf{u}_t\}_{t=1}^T) \triangleq \sum_{t=1}^T f_t(\theta_t) - \sum_{t=1}^T f_t(\mathbf{u}_t)$$

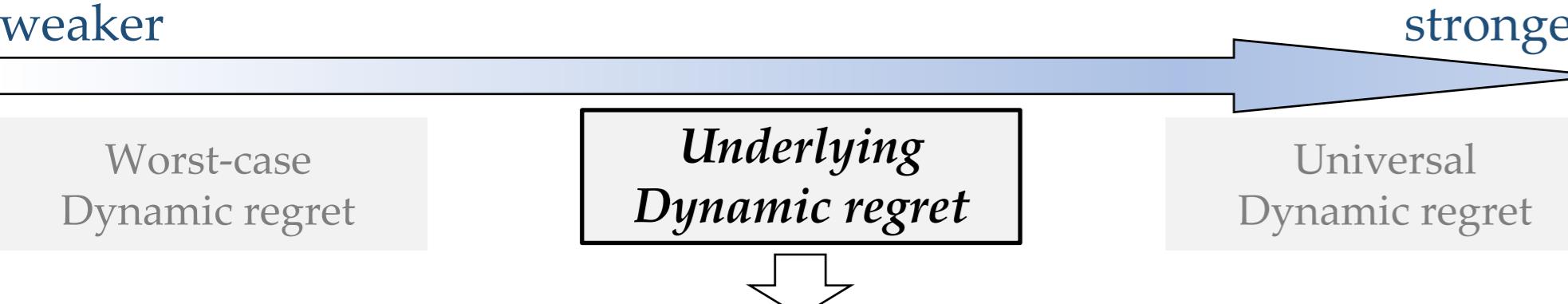
➡ hold *universally* for arbitrary comparator sequence.

However: typically need to deploy a two-layer *online-ensemble* [1].



Our Measure: Underlying Dynamic Regret

Motivation: how to attain optimal dynamic regret *without* deploying an ensemble of multiple base models?



Underlying Dynamic Regret: compare with ground-truth minimizers

$$\text{Reg}_T^d(\{f_t, \mathbf{u}_t\}_{t=1}^T) \triangleq \sum_{t=1}^T f_t(\theta_t) - \sum_{t=1}^T f_t(\mathbf{u}_t)$$

where $\mathbf{u}_t \in \Theta$ is the ground-truth comparator characterizing the *underlying distribution* at round t .

Although \mathbf{u}_t is not observable, we can obtain a *noisy estimation* $\tilde{\mathbf{u}}_t$

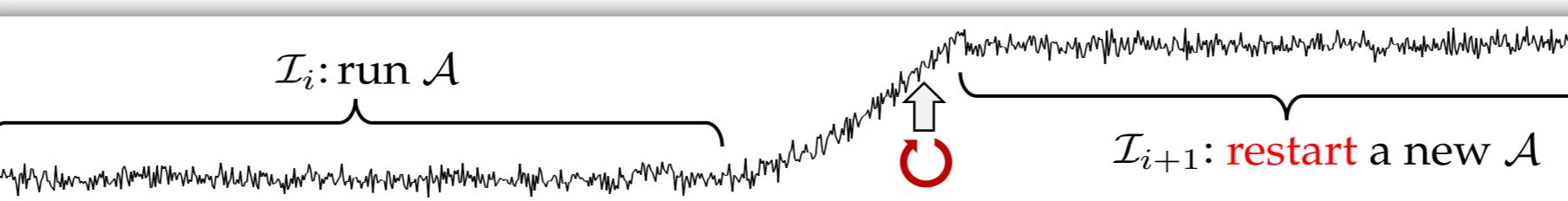
Assumption 1 (observation model). *The learner observes $\tilde{\mathbf{u}}_t$ satisfying*

$$\mathbb{E}[\tilde{\mathbf{u}}_t] = \mathbf{u}_t, \text{ with a bounded variance of } \sigma^2, \text{i.e., } \mathbb{V}[\tilde{\mathbf{u}}_t] = \frac{1}{d} \|\tilde{\mathbf{u}}_t - \mathbf{u}_t\|_2^2 \leq \sigma^2.$$

- $\tilde{\mathbf{u}}_t$ can be obtained by construct an unbiased estimator;
- Sufficiently *general* to encompass many real learning problem of interest: online label/covariate shift, etc.;
- By focusing on the *specific structure* of the stochastic comparator, we achieve a tight regret bound with a *single-layer algorithm*.

Method: Wavelet Detection-Restart Framework

Overview of our framework:



- “Denoise” the noisy observation $\tilde{\mathbf{u}}_t$ to approximate \mathbf{u}_t ;
- Restart the algorithm once the abrupt changes are *detected*.

Step 1: Detect environment non-stationarity based on *wavelets* [2]:

Algorithm 1: Detection Module by Wavelets

Input: Restart threshold γ ; online algorithm \mathcal{A} .

Initialize: coefficient matrix $\tilde{\alpha} = 0$, time $s = 1$;

for $t = 1, \dots, T$ do

- Update coefficient matrix $\tilde{\alpha}_{[s,t]}$ as Sec 3.2;
- if $\|\delta_{\gamma}(\tilde{\alpha}_{[s,t]})\|_F > \gamma$ then (γ ≈ 1/Variance)
 Restart the online algorithm \mathcal{A} ;
- Reset coefficient matrix $\tilde{\alpha} = 0$, set $s = t + 1$;
- Output the prediction θ_t using \mathcal{A} ;
- Suffer loss $f_t(\theta_t)$, observe $\tilde{\mathbf{u}}_t$, and update \mathcal{A} ;

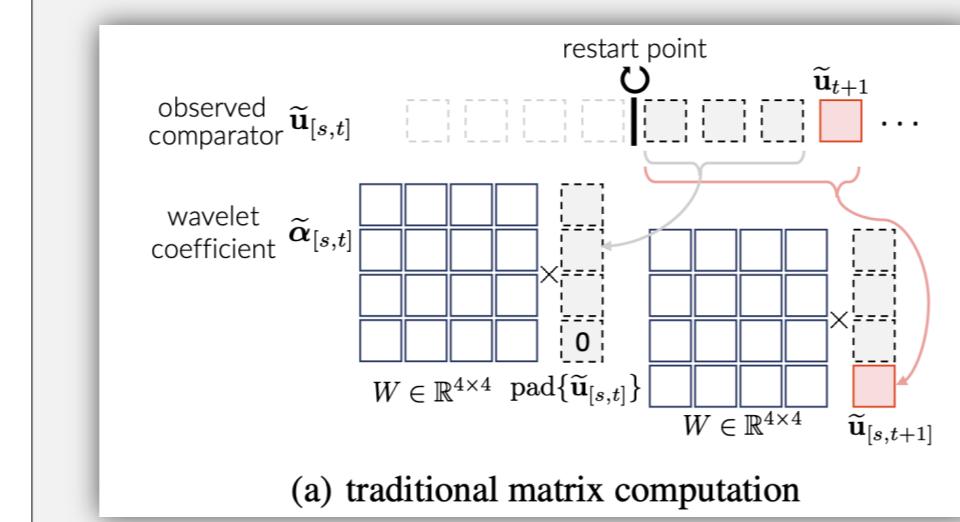
end

- Maintain only *one* learner \mathcal{A}
- Maintain wavelet coefficients of the empirical sequence $\{\tilde{\mathbf{u}}_t\}$
- **Restart** \mathcal{A} once the norm of coefficients exceed threshold

Step 2: Efficiently calculate wavelet coefficients in an *online* manner:

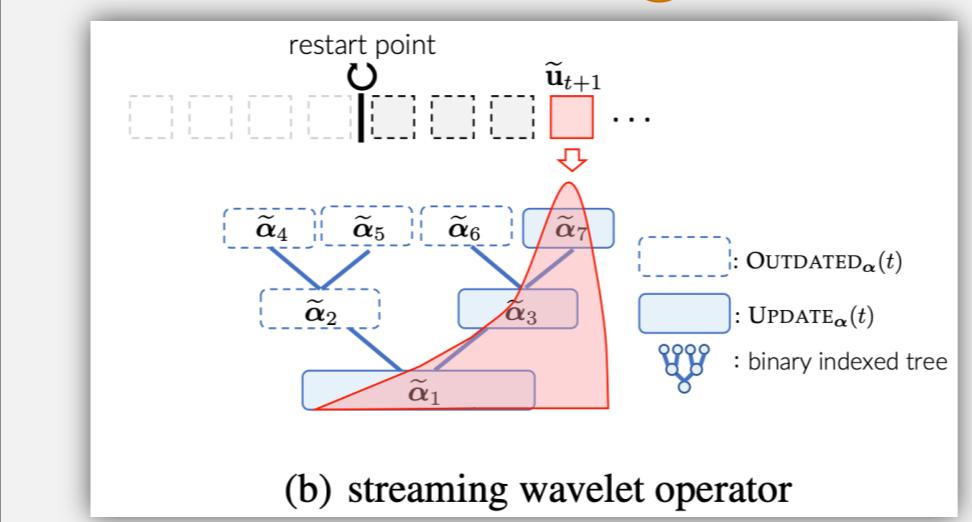
Traditional Computation

- Matrix multiplication $\tilde{\alpha}_{[s,t]} = W_{[s,t]}^\top \tilde{\mathbf{u}}_{[s,t]}$
- Store all data, and recalculate all coeffi.
- $\mathcal{O}(T)$ complexity 😞



our Streaming Wavelet Operator

- Use a binary indexed tree
- Only lazily update *a portion* of coeffi.
- Only maintain the *norm* information
- $\mathcal{O}(\log T)$ complexity 😊



Theoretical Guarantees of *dynamic regret*:

Theorem 1. With prob. at least $1 - 2/T$, using our detection-restart framework in Algorithm 1 with a \mathcal{A} satisfying certain requirement, we have

➢ for *convex* function:

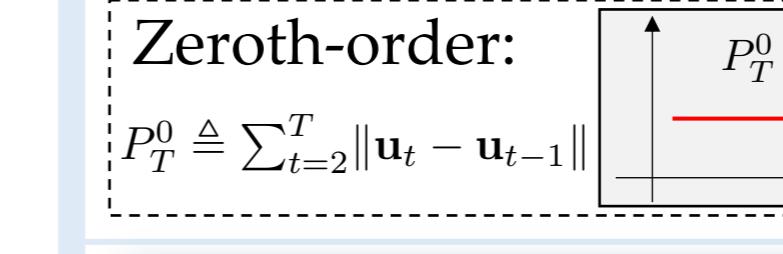
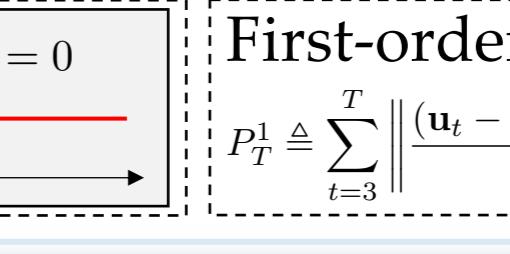
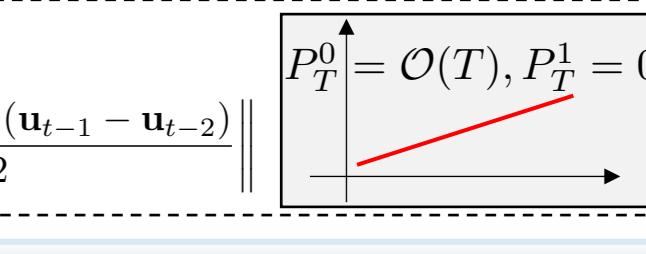
$$\text{Reg}_T^d \leq \tilde{\mathcal{O}}\left(T^{\frac{k+2}{2k+3}} (P_T^k)^{\frac{1}{2k+3}}\right)$$

where $P_T^k \triangleq T^k \|D^{k+1} \mathbf{u}_{[1,T]}\|_1$ is the *k-th order* path length ($k \geq 0$).

➢ for *exp-concave* function:

$$\text{Reg}_T \leq \tilde{\mathcal{O}}\left(T^{\frac{1}{2k+3}} (P_T^k)^{\frac{2}{2k+3}}\right)$$

* Our method is flexible to accommodate *higher-order (k-th order)* path length:

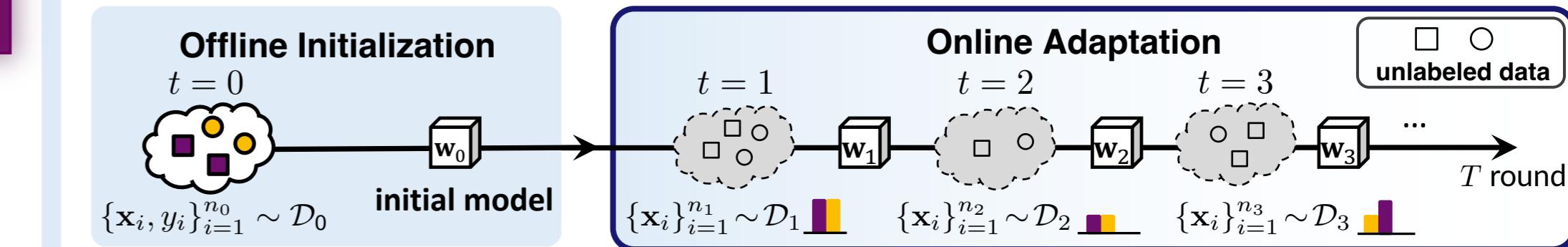


Application: Online Label Shift [3]

Setting:

label distribution $\mathcal{D}_t(y)$ changes over time,

and conditional $\mathcal{D}_t(x | y)$ remains unchanged.



Apply our detection-restart framework to solve it:

- (i) Get unbiased estimation using BBSE (previous label shift estimator);
- (ii) Maintain wavelet coefficients of the estimated label distribution;
- (iii) Setting \mathcal{A} as Reweighting or OGD, **restart** \mathcal{A} if detecting changes.

Reweighting Update as \mathcal{A}

$$[h_t(x)]_j = \frac{1}{Z(x)} \frac{[\tilde{p}_t]_j}{\mathcal{D}_0(y=j)} [h_0(x)]_j, \forall j \in [K]$$

OGD Update as \mathcal{A}

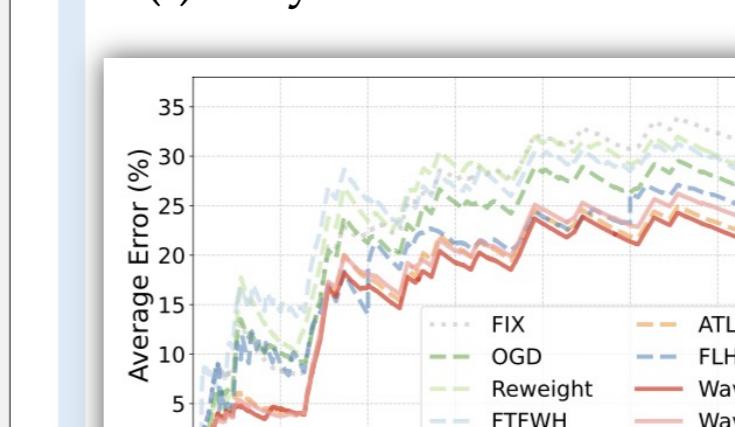
$$\mathbf{w}_{t+1} = \Pi_{\mathcal{W}}[\mathbf{w}_t - \eta_t \nabla \hat{R}_t(\mathbf{w}_t)], \text{ with } \eta_t = 1/\sqrt{t-s}$$

Both achieving *optimal* dynamic regrets for online label shift.

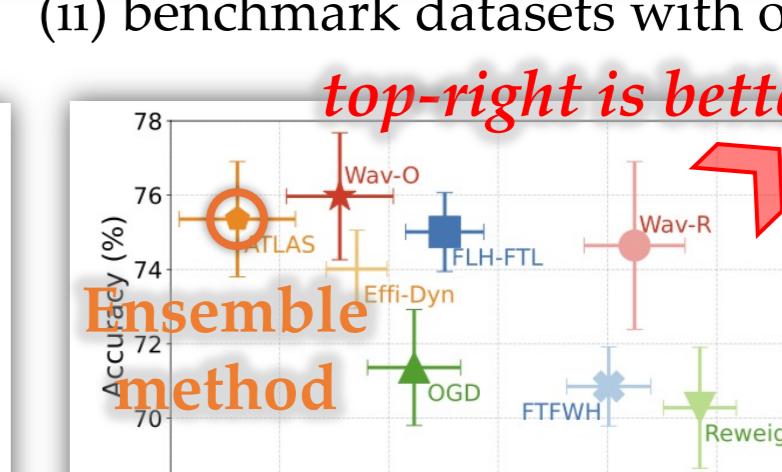
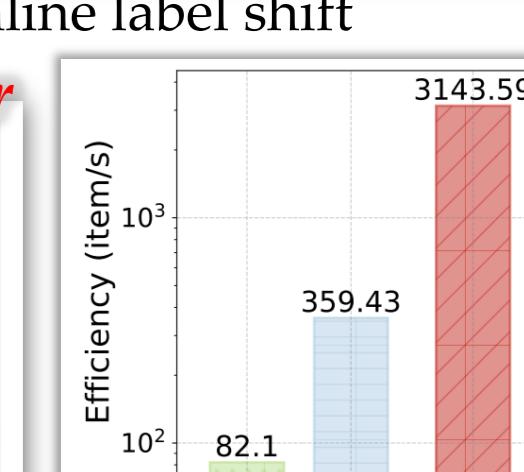
Experiments

	Linear	Square
FIX	7.87 ± 0.03	7.98 ± 0.04
OGD	5.35 ± 0.02	6.10 ± 0.03
Reweight	6.08 ± 0.01	6.45 ± 0.02
FTFWH	5.27 ± 0.02	5.62 ± 0.01
ATLAS	5.44 ± 0.02	5.65 ± 0.01
Effi-Dyn	5.30 ± 0.02	5.83 ± 0.01
FLH-FTL	5.28 ± 0.03	5.64 ± 0.02
$k = 0$	5.30 ± 0.01	5.67 ± 0.03
$k = 1$	5.25 ± 0.01	5.61 ± 0.02
$k = 2$	5.47 ± 0.03	5.58 ± 0.03

(i) synthetic OCO



(ii) benchmark datasets with online label shift



(iii) real-world locomotion data

(iv) efficiency comparison

[1] Zhao et al., Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization, JMLR 2024.

[2] Baby and Wang, Online Forecasting of Total-Variation-bounded Sequences, NeurIPS 2019.

[3] Bai et al., Adapting to online label shift with provable guarantees, NeurIPS 2022.