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� Introduction I

� Why Quantile Regression?
Reason 1: Quantile regression allows us to study the impact of predictors on different quantiles of the
response distribution, and thus provides a complete picture of the relationship between responses and
covariates.
Reason 2: Robust to outliers in response observations.
Reason 3: Estimation and inference are distribution-free, and heterogeneity is usually allowed in
quantile regression models.

� Loss Function
ρτ (u) = u{τ − I(u < 0)},

where I is the indicator function, and τ is the quantile level.
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� Introduction II

Figure 1: Financial Crisis Figure 2: Income Pyramid

Figure 3: Powerful Typhoon Figure 4: Air Pollution
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� Introduction III
Suppose a random pair (x, y) is drawn from an unknown joint distribution ρ(x, y),
consider the following quantile regression model

y = f∗τ (x) + ε, (1)

where
y ∈ R is the scala response;
x ∈ X ⊂ Rp is the p-dimensional vector of the covariate;
ε is the model error which satisfies P(εi < 0|x) = τ for τ ∈ (0, 1).

Model (1) implies the following model.

� Nonparametric quantile regression
Qτ (yi | x) = f∗τ (x), τ ∈ (0, 1),

where Qτ (·|x) refers to the τ -th conditional quantile of the response y given the covariate x.
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� Introduction IV
The method of kernel quantile regression (KQR) is based on the idea of a reproducing
kernel Hilbert space.

� Reproducing Kernels
Any symmetric, bounded and positive semi-definite kernel function K : X × X → R defines a reproducing
kernel Hilbert space (RKHS), denoted by HK. An important property of HK is the reproducing property
that for any f ∈ HK, there holds

〈f,K(x, ·)〉K = f(x),
where 〈·, ·〉K denotes the inner product in HK. Its equipped norm is defined as ‖ · ‖2K = 〈·, ·〉K.
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� Introduction V

Consider a standard supervised learning problem that we have a sample D = {(xi, yi)}|D|
i=1,

KQR estimates a function in the RKHS HK by minimizing the check loss function
combined with a penalty based on the squared Hilbert norm

fD,λ = argmin
f∈HK

1

|D|

|D|∑
i=1

ρτ
(
yi − f(xi)

)
+ λ‖f‖2K, (2)

where |D| is the cardinality of D and λ is the regularization parameter controlling the
model smoothness.
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� Reviews and Motivation I

� Computation
According to the representer theorem (Wahba, 1990), the solution of this optimization task (2) is of finite
form as given by fD,λ(x) =

∑|D|
i=1 αiK(x, xi) = αTKN(x). With this solution plugged into (2), the

optimization problem can be reformulated as

α̂ = argmin
α∈R|D|

1

|D|

|D|∑
i=1

ρτ
(
yi −αTKN(xi)

)
+ λαTKα, (3)

where α = (α1, . . . , α|D|)
T ∈ R|D| are the representer coefficients and

KN(x) = (K(x1, x), . . . ,K(x|D|, x))T ∈ R|D|, and K = {K(xi, xj)}|D|
i,j=1 is the Gram matrix.

Dual optimization (Takeuchi et al., 2006; Feng et al., 2023);
Path-following algorithm (Li et al., 2007);
ADMM algorithm (Boyd et al., 2011; Wang et al., 2024).
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� Reviews and Motivation II

� Existing issues
The scalability of KQR for large datasets is limited due to the expensive computational complexity
(O(|D|3) and storage requirements (O(|D|2) when |D| is large.
The theoretical investigation of KQR is not clear and deep enough (Suboptimal or
capacity-independent).
Most work assume the realizable setting, i.e., f∗τ ∈ HK, does KQR work in the agnostic setting, i.e.,
fρ /∈ HK?

Question: Can we find some accelerated methods that can achieve a optimal trade-off
between the computation and theory, especially in the agnostic settings?
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� Random Fourier Features I

The following classical theorem from harmonic analysis provides the key insight behind
random feature mapping:

� Bochner’s theorem
A continuous kernel K(x, x′) = K(x − x′) on Rp is positive definite if and only if K(x − x′) is the Fourier
transform of a non-negative measure.

� Unbiased feature mapping
If a shift-invariant kernel K(·, ·) is properly scaled, Bochner’s theorem guarantees that its Fourier
transform π(ω) is a proper probability distribution. Define φ(x,ω) = ejωTx we have

K(x, x′) = K(x − x′) =

∫
Rp

π(ω)ejωT(x−x′)dω = Eω
[
φ(x,ω)φ∗(x′,ω)

]
, (4)

where ∗ denoting the Hermitian transpose. So φ(x,ω)φ∗(x′,ω) is an unbiased estimator of K(x, x′) when ω
is drawn from π(ω).
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� Random Fourier Features II

Since both π(ω) and K(·, ·) are real, the integral (4) converges when the complex
exponentials are replaced with cosines.

� Real-valued feature mapping
A real-valued mapping that satisfies the condition K(x, x′) = Eω

[
φ(x,ω)φ∗(x′,ω)

]
can be obtained by

setting
φ(x,ω) =

√
2 cos(ωTx + b),

where ω is drawn from π(ω) and b is drawn uniformly from [0, 2π].
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� Random Fourier Features III

Figure 5: Random Fourier Features. Each component of the feature map φ(x,ω) =
√

2 cos(ωTx + b) projects x onto a random
direction ω drawn from the Fourier transform π(ω), and wraps this line onto the unit circle in R2. After transforming two points x
and x′ in this way, their inner product is an unbiased estimator of K(x, x′). The mapping additionally rotates this circle by a random
amount b and projects the points onto the interval [0, 1] (Rahimi and Recht, 2007).
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� Examples

Table 1: Some examples of shift invariant kernels and their Fourier transforms (Rahimi and Recht, 2007).

Kernel Name K(∆) π(ω)

Gaussian Kernel e−
‖∆‖22

2 (2π)
D
2 e−

‖ω‖22
2

Laplacian Kernel e−‖∆‖1 ∏
d

1
π(1+ω2

d)

Cauthy Kernel
∏

d
1

(1+∆2
d)

e−‖∆‖1
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� Kernel Approximation

� Kernel approximation with random features
It is thus clear that we can adopt the standard Monte Carlo sampling method to estimate K(x, x′) by

KM(x, x′) = 〈φM(x,ω),φM(x′,ω)〉,

where φM(x,ω) = 1√
M

(
φ(x,ω1), . . . , φ(x,ωM)

)T is the feature map and ω1, . . . ,ωM are independently
sampled with respect to π.

Remark: In addition to the shift invariant kernel, any kernel has the following integral
representation can use the above approximation,

K(x, x′) =

∫
Ω
φ(x,ω)φ(x′,ω)dπ(ω), (5)
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� RKHS Approximation

� RKHS approximation with random features
Define a M-dimensional function space HM related to φM(x) as

HM =
{

f | f(x) = uTφM(x), x ∈ X , u ∈ RM
}
.

It thus clear that HM is a RKHS induced by kernel function KM(x, x′) = 〈φM(x,ω),φM(x′,ω)〉. For
f = uTφM(x) ∈ HM, g = zTφM(x) ∈ HM, we define their inner product in HM as 〈f, g〉HM = uTz. And the
corresponding norm of f in HM is ‖f‖HM =

√
uTu = ‖u‖2.

� Caixing Wang, Xingdong Feng (SUFE) � Kernel QR with random features July 9, 2024 15 / 43



� Illustration

Figure 6: A simple illustration of kernel and RKHS approximation using RF.
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� KQR with Random Features I

� KQR-RF
Different from KQR, KQR with random features (KQR-RF) estimates a function in the approximation
RKHS HM

fM,D,λ = argmin
f∈HM

1

|D|
∑

(x,y)∈D

ρτ (y − f(x)) + λ‖f‖2HM , (6)
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� KQR with Random Features II

� Computation
According to the representer theorem, the solution of (3) with random features can be written as

fM,D,λ(x) = ûTφM(x), (7)

and the optimization problem becomes

û = argmin
u∈RM

1

|D|

|D|∑
i=1

ρτ
(
yi − uTφM(xi)

)
+ λuTu. (8)

Notably, leveraging random features allows us to reformulate the initial problem into
linear quantile regression augmented by a ridge penalty, reducing the number of
parameters to be M � |D|.
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�Theoretical Goal

The objective of KQR-RF is to find an estimator that minimizes the following expected
risk

E(f) =
∫
X×R

ρτ
(
y − f(x)

)
dρ(x, y),

and we evaluate the performance of KRR-RF by the excess risk E(f)− E(f∗τ ), or the
L2
ρX -norm of the difference ‖f − f∗τ‖2ρ.
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� Definitions and Assumptions I

Definition 1 (Integral operators)
For any f ∈ L2

ρX , we define the integral operators by the kernel K and KM as

LKf=
∫
X

K(x, ·)f(x)dρX ,

LMf=
∫
X

KM(x, ·)f(x)dρX .

Definition 2 (Effective dimension)
For λ > 0, we define the effective dimension of kernel K and KM as

N (λ)= Tr((LK + λI)−1LK),

NM(λ)= Tr((LM + λI)−1LM).
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� Definitions and Assumptions II

Assumption 1 (Bounded and continuous random features)
Assume kernel K has the integral representation defined in (5) with φ bounded and continuous in both
variables, that is, there exists some constant κ ≥ 1 such that |φ(x,ω)| ≤ κ for any x ∈ X and ω ∈ Ω. The
associated RKHS HK is separable.

Assumption 2 (Source condition)
Suppose there exists R > 0, r > 0 and hτ ∈ L2

ρX such that

f∗τ = Lr
Khτ , (9)

where ‖hτ‖ρ ≤ R and Lr
K is the r-th power of LK.
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� Definitions and Assumptions III

Remark
The parameter r controls the size of the functional class of f∗τ . When r ∈ [1/2, 1], the functional class
C is a subset of the assumed RKHS HK, so we have f∗τ ∈ HK. When r ∈ (0, 1/2), the functional class
C is larger than the assumed RKHS HK, and there exists some cases where f∗τ /∈ HK.
Existing literature on KQR and kernel methods with Lipschitz continuous loss functions often
assumes that r = 1/2 (Bach, 2017; Sun et al., 2018; Li et al., 2021) or r ∈ [1/2, 1] (Lian, 2022),
corresponding to the realizable setting f∗τ ∈ HK. However, our analysis further allows r ∈ (0, 1/2),
relating to the agnostic setting f∗τ /∈ HK.

Assumption 3 (Capacity condition)
For λ > 0, there exists Q > 0 and γ ∈ [0, 1] such that

N (λ) ≤ Q2λ−γ . (10)
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� Definitions and Assumptions IV

For kernel ridge reression (KRR) and Kernel ridge regression with random features
(KRR-RF), the minimax optimal capacity-dependent rate has been shown to be
O(|D|

2r
2r+γ ) (Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017).

Whether KQR-RF can achieve the above optimal learning rate even under the
agnostic settings?

Assumption 4 (Adaptive self-calibration condition)
Let fy|x(·) denote the conditional density function of y given x. Suppose that supt∈R fy|x(t) ≤ c1 for c1 > 0.
Furthermore, there exist some universal constants ε, ε′, c2 > 0 that are independent with x and y, such
that for any y ∈ B(f∗τ (x), ε) and |δ| ≤ ε′, the following inequality holds almost surely,

|Fy|x(y + δ)− Fy|x(y)| ≥ c2|δ|, (11)

where B(f∗τ (x), ε) = {y | |y − f∗τ (x)| ≤ ε} denotes the ball centered at f∗τ (x) with radius ε, and Fy|x(·) is the
cumulative distribution function of y given x.
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� Definitions and Assumptions V

For example, if y has a density that is bounded away from zero on some compact
interval around f∗τ (x), then Assumption 4 holds. More importantly, we do not impose
any moment condition on the distribution of y.
It is also worth noting that Assumption 3.6 is weaker than Condition 2 in He and Shi
(1994) where the density function of y is lower bounded everywhere by some positive
constant. It is also weaker than Condition D.1 in Belloni and Chernozhukov (2011)
requiring the conditional density of Y given x to be continuously differentiable and
bounded away from zero uniformly for all τ ∈ (0, 1) and all x in the support X .
The special case when ε = 0 aligning with the self-calibration condition also appeared
in Shen et al. (2021); Madrid Padilla and Chatterjee (2022).
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� Existing Theorem

Theorem 19 of Li et al. (2021)
Assume there exists a function fH such that fH = argminf∈HK

E(f). Under some technical assumptionsa,
and λ = O(|D|−1), when the number of random features satisfies

M & |D|
γ
2 log |D|,

and |D| is sufficiently large, there holds

E(fM,D,λ)− E(fH) � ‖fM,D,λ − fH‖2ρ = O(|D|−
1
2 ),

with probability near to 1.

aAssumption 1, Assumption 2 with r = 1/2, eigenvalue decaying assumption (stronger than Assumption
3), and the local strongly convex assumption which can be derived from Assumption 4.
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� Sharper Learning Rates for KQR-RF I

Theorem 1
Under Assumptions 1-4, if r ∈ (0, 1], γ ∈ [0, 1], and set λ = |D|−

1
2r+γ , when the number of random features

satisfies

M & |D|
1

2r+γ , for r ∈ (0, 1/2);

M & |D|
(2r−1)γ+1

2r+γ , for r ∈ [1/2, 1],

and |D| is sufficiently large, there holds

E(fM,D,λ)− E(f∗τ ) � ‖fM,D,λ − f∗τ‖2ρ = O(|D|−
2r

2r+γ log2 |D|),

with probability near to 1.
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� Sharper Learning Rates for KQR-RF II

The capacity-dependent learning rates obtained in Theorem 1 align with those of KRR (Caponnetto
and De Vito, 2007) and KRR-RF (Rudi and Rosasco, 2017), which is minimax optimal and thus can
not be improved any further.
Compared to Lian (2022), we relax the regularity condition from r ∈ [1/2, 1] to r ∈ (0, 1], covering a
wider range of scenarios.

Remark
Theorem 1 uses the naive uniform sampling strategy for the random features (generate φ(x,ω) with π(ω)),
which is independent of the training samples. This may lead to an unnecessary burden in computation.
Inspired by the data-dependent sampling strategy Bach (2017); Avron et al. (2017); Rudi and Rosasco
(2017), we aim to demonstrate in the upcoming section how these strategies enable attaining optimal
learning rates across all agnostic settings r ∈ (0, 1] with a reduced number of random features in the next
section.

� Caixing Wang, Xingdong Feng (SUFE) � Kernel QR with random features July 9, 2024 27 / 43



� Refined Analysis: Beyond Uniform Sampling I

Assumption 5 (Compatibility condition)
Define the maximum dimension of random features as

N∞(λ) = sup
ω∈Ω

∥∥∥(LK + λI)−1/2φ(·,ω)
∥∥∥2

ρX
, (12)

where λ > 0. There exist constants α ∈ [0, 1] and F > 0, such that N∞(λ) ≤ Fλ−α.

Recall the definition of N (λ) in Definition 2. N (λ) and N∞(λ) measure the average and
supreme capacities of HK, respectively, so we have

N (λ) = Eω
∥∥∥(LK + λI)−1/2φ(·,ω)

∥∥∥2
ρX

≤ sup
ω∈Ω

∥∥∥(LK + λI)−1/2φ(·,ω)
∥∥∥2
ρX

= N∞(λ),

where Eω denotes the expectation taking over ω.
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� Refined Analysis: Beyond Uniform Sampling II

Theorem 2
Under Assumptions 1-5, if r ∈ (0, 1], γ ∈ [0, 1], and set λ = |D|−

1
2r+γ , when the number of random features

satisfies

M & |D|
α

2r+γ , for r ∈ (0, 1/2);

M & |D|
(2r−1)(1+γ−α)+α

2r+γ , for r ∈ [1/2, 1],

and |D| is sufficiently large, there holds

E(fM,D,λ)− E(f∗τ ) � ‖fM,D,λ − f∗τ‖2ρ = O(|D|−
2r

2r+γ log2 |D|),

with probability near to 1.
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� Refined Analysis: Beyond Uniform Sampling III

The above capacity-dependent learning rate is the same as that of Theorem 1, while
the required number of random features reduces from O(|D|

1
2r+γ ) to O(|D|

α
2r+γ ) when

r ∈ (0, 1/2) and O(|D|
(2r−1)γ+1

2r+γ ) to O(|D|
(2r−1)(1+γ−α)+α

2r+γ ) when r ∈ [1/2, 1], owing to the
additional Assumption 5.
By adopting a favorable sampling strategy called leverage scores sampling strategy,
we can further reduce the required number of random features and achieve the
optimal learning rates across the entire range of r ∈ (0, 1].

Leverage scores sampling
Given the integral representation of kernel K as stated in (5), we adopt the leverage scores sampling
strategy (Bach, 2017; Avron et al., 2017) by employing an importance ratio denoted as
q(ω) = lλ(ω)/

∫
ω lλ(ω)dπ(ω), where lλ(ω) = ‖(LK + λI)−1/2φ(·,ω)‖2ρX . Consequently, the random

features are computed as φl(x,ω) = [q(ω)]−1/2φ(x,ω) and exhibit a distribution πl(ω) = q(ω)π(ω).
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� Refined Analysis: Beyond Uniform Sampling IV

As pointed out in Rudi and Rosasco (2017), the random features provide the integral
representation of K and satisfy Assumption 5 with α = γ indicating that
N (λ) = N∞(λ).

Corollary 1
Under Assumptions 1-5, if random features are sampled according to the leverage scores sampling strategy,
r ∈ (0, 1], γ ∈ [0, 1], and set λ = |D|−

1
2r+γ , when the number of random features satisfies

M & |D|
γ

2r+γ , for r ∈ (0, 1/2);

M & |D|
2r+γ−1
2r+γ , for r ∈ [1/2, 1],

and |D| is sufficiently large, there holds

E(fM,D,λ)− E(f∗τ ) � ‖fM,D,λ − f∗τ‖2ρ = O(|D|−
2r

2r+γ log2 |D|),

with probability near to 1.
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� Refined Analysis: Beyond Uniform Sampling V

Figure 7: Comparison between the number of random features M = O(|D|c) required for uniform sampling (α = 1, left) and leverage
scores sampling (α = γ, right) in the realizable case.
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� Refined Analysis: Beyond Uniform Sampling VI

Figure 8: Comparison between the number of random features M = O(|D|c) required for uniform sampling (α = 1, left) and leverage
scores sampling (α = γ, right) in the agnostic case.
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�Comparisons to the Related Work

Table 2: Summary of conditions for derived learning rates in different methods.

Methods Regularity condition Capacity
condition Random centers M Learning rate

KRR (Caponnetto and De Vito, 2007) r ∈ [1/2, 1] γ ∈ [0, 1] × |D|−
2r

2r+γ

KRR (Zhang et al., 2023) r ∈ (0, 1] γ ∈ [0, 1] × |D|−
2r

2r+γ

KRR-RF-Uniform (Rudi and Rosasco, 2017) r ∈ [1/2, 1] γ ∈ [0, 1] |D|−
(2r−1)γ+1

2r+γ |D|−
2r

2r+γ

KRR-RF-Leverage (Rudi and Rosasco, 2017) r ∈ [1/2, 1] γ ∈ [0, 1] |D|−
2r+γ−1
2r+γ |D|−

2r
2r+γ

KRR-RF-Uniform (Li et al., 2023) r ∈ (0, 1], 2r + γ ≥ 1 γ ∈ [0, 1] |D|−
1

2r+γ |D|−
2r

2r+γ

KRR-RF-Leverage (Li et al., 2023) r ∈ (0, 1] γ ∈ [0, 1] |D|−
γ

2r+γ |D|−
2r

2r+γ

KQR (Lian, 2022) r ∈ [1/2, 1] γ ∈ [0, 1] × |D|−
2r

2r+γ

Lip-RF-Uniform (Rahimi and Recht, 2008) r = 1/2 γ ∈ [0, 1] |D| |D|−1/2

Lip-RF-Leverage Bach (2017) r = 1/2 γ ∈ [0, 1] |D|
γ
2 |D|−1/2

Lip-RF-Uniform (Li et al., 2021) r = 1/2 γ ∈ [0, 1] |D| |D|−1/2

Lip-RF-Leverage (Li et al., 2021) r = 1/2 γ ∈ [0, 1] |D|
γ
2 |D|−1/2

KSVM-RF (Sun et al., 2018) r = 1/2 γ ∈ [0, 1] |D|
2γ

2γ+1 |D|−
1

2γ+1

KQR-RF (Theorem 2) r ∈ (0, 1] γ ∈ [0, 1]
|D|

α
2r+γ , r ∈ (0, 1/2)

|D|
(2r−1)(1+γ−α)+α

2r+γ , r ∈ [1/2, 1]
|D|−

2r
2r+γ

KQR-RF-Uniform (Theorem 1) r ∈ (0, 1] γ ∈ [0, 1]
|D|

1
2r+γ , r ∈ (0, 1/2)

|D|
(2r−1)γ+1

2r+γ , r ∈ [1/2, 1]
|D|−

2r
2r+γ

KQR-RF-Leverage (Corollary 1) r ∈ (0, 1] γ ∈ [0, 1]
|D|

γ
2r+γ , r ∈ (0, 1/2)

|D|
2r+γ−1
2r+γ , r ∈ [1/2, 1]

|D|−
2r

2r+γ
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� Simulation Study I

� Spline kernel
We consider the spline kernel of order q, defined as

Λq
(
x, x′) =

∞∑
k=−∞

e2πikxe−2πikx′
|k|−q,

where x, x′ ∈ [0, 1], and q ∈ R. According to the property of spline kernel, we have∫ 1

0

Λq(x, z)Λq′
(
x′, z

)
dz = Λq+q′

(
x, x′) ,

for any q, q′ ∈ R. Consequently, for r ∈ (0, 1] and γ ∈ [0, 1], let K(x, x′) = Λ 1
γ
(x, x′), and its corresponding

random feature is φ(x,w) = Λ 1
2γ

(x,w) with w ∼ U(0, 1).
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� Simulation Study II

� Simulation setting
Data are generated from the following model

y = Λ r
γ
+ 1

2
(x, 0) + ε,

where ε ∼ N(0, 0.01) and x ∼ U(0, 1).

To graphically show the true and estimated quantile function, we consider three different
settings:

1 worst case (r = 0, γ = 1);
2 general case (r = 1/2, γ = 1);
3 most benign case (r = 1, γ = 0).

� Caixing Wang, Xingdong Feng (SUFE) � Kernel QR with random features July 9, 2024 36 / 43



�Results I
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Figure 9: True quantile curves for r = 0, γ = 1 (left), r = 1/2, γ = 1 (middle), and r = 1, γ = 0 (right).
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�Results II
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Figure 10: Estimated and true quantile curves for r = 0, γ = 1 (left), r = 1/2, γ = 1 (middle), and r = 1, γ = 0 (right) when τ = 0.5.
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�Learning Rates Validation

To validate the derived learning rates, i.e., E(fM,D,λ)− E(f∗τ ) = O(|D|−
2r

2r+γ ), we
estimate the log-transformed excess risk on the testing data and compared it with the
theoretical one. We consider two agnostic cases (r = 0.2, γ = 0.1 and r = 0.4, γ = 0.2)
and two realizable cases (r = 0.5, γ = 0.1 and r = 0.8, γ = 0.2) for better illustration.
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�Results III
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Figure 11: Log empirical excess risk for r = 0.2, γ = 0.1 (left top), r = 0.4, γ = 0.2 (right top), r = 0.5, γ = 0.1 (left bottom) and
r = 0.8, γ = 0.2 (right bottom) when τ = 0.5.
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� Discussion

First two figures shows that KQR-RF can estimate the quantile functions very well
both in realizable and agnostic settings.
Last figure that the data points are uniformly distributed on both sides of a straight
line, which verifies the derived learning rate. To further investigate the constants in
the big-O bounds, we calculate the slope of each learning curve and compare it to
− 2r

2r+γ . The slope constants are 0.81, 1.21, 1.63, 0.95 in four scenarios. This also
highlights our contribution in deriving the sharper and capacity-dependent learning
rates.
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