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M Introduction I

Y Why Quantile Regression?

@ Reason 1: Quantile regression allows us to study the impact of predictors on different quantiles of the
response distribution, and thus provides a complete picture of the relationship between responses and
covariates.

@ Reason 2: Robust to outliers in response observations.

@ Reason 3: Estimation and inference are distribution-free, and heterogeneity is usually allowed in
quantile regression models.

pU)

p-(0) = u{r —Z(u<0)},

where Z is the indicator function, and 7 is the quantile level.
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M [ntroduction II
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M Introduction II1

Suppose a random pair (x,y) is drawn from an unknown joint distribution p(x,y),
consider the following quantile regression model

y = f;k—(x) &, (1)

where

@ y € R is the scala response;

e x € X C RP is the p-dimensional vector of the covariate;

e ¢ is the model error which satisfies P(¢; < O|x) = 7 for 7 € (0, 1).
Model (1) implies the following model.

Q Nonparametric quantile regression

QT(yi ‘X):fj.(X) T E (071)7 )

where Q- (:|x) refers to the 7-th conditional quantile of the response y given the covariate x.
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M Introduction IV

The method of kernel quantile regression (KQR) is based on the idea of a reproducing
kernel Hilbert space.

Q Reproducing Kernels

Any symmetric, bounded and positive semi-definite kernel function K : X x X — R defines a reproducing
kernel Hilbert space (RKHS), denoted by Hk. An important property of Hxk is the reproducing property
that for any f € Hk, there holds

(£ K(x, )k = f(x),

where (-, )k denotes the inner product in Hk. Its equipped norm is defined as || - |k = (-, -)k.
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A Introduction V

D

Consider a standard supervised learning problem that we have a sample D = {(xi,yi) };_3,
KQR estimates a function in the RKHS Hk by minimizing the check loss function
combined with a penalty based on the squared Hilbert norm

fp\ = argmin— ZPT(}G — f(x1)) + Alfll%, (2)

where |D| is the cardinality of D and A is the regularization parameter controlling the
model smoothness.
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M Reviews and Motivation I

According to the representer theorem (Wahba, 1990), the solution of this optimization task (2) is of finite
form as given by fp i (x) = Z'Dll aiK(x,x1) = aTKy(x). With this solution plugged into (2), the
optimization problem can be reformulated as

D]
& = argmin — pr Vi — aTKx (xi)) + )\aTKa, (3)
wcriDl D] &
where & = (a1, ...,ap|)" € R/Pl are the representer coefficients and

Kn(x) = (K(x1,%), ..., K(xp|,x))" eRP! and K = {K(Xl,xj)} is the Gram matrix.

1_]1

e Dual optimization (Takeuchi et al., 2006; Feng et al., 2023);
e Path-following algorithm (Li et al., 2007);
e ADMM algorithm (Boyd et al., 2011; Wang et al., 2024).
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M Reviews and Motivation 11

 Existing issues

@ The scalability of KQR for large datasets is limited due to the expensive computational complexity
(O(|D|?) and storage requirements (O(|D|?) when |D| is large.

@ The theoretical investigation of KQR is not clear and deep enough (Suboptimal or
capacity-independent).

@ Most work assume the realizable setting, i.e., f5 € Hxk, does KQR work in the agnostic setting, i.e.,
fp ¢ Hk?

Question: Can we find some accelerated methods that can achieve a optimal trade-off
between the computation and theory, especially in the agnostic settings?
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M Random Fourier Features I

The following classical theorem from harmonic analysis provides the key insight behind
random feature mapping:

S Bochner’s theorem

A continuous kernel K(x,x’) = K(x — x) on RP is positive definite if and only if K(x — x’) is the Fourier
transform of a non-negative measure.

Q Unbiased feature mapping

If a shift-invariant kernel K(-,-) is properly scaled, Bochner’s theorem guarantees that its Fourier

transform m(w) is a proper probability distribution. Define ¢(x,w) = "> we have

K(x,x') =Kx—x) = /R m(@)e" D dw = Ew [p(x, )" (', )], (4)

where * denoting the Hermitian transpose. So ¢(x,w)$*(x’,w) is an unbiased estimator of K(x,x’) when w
is drawn from 7(w).

o

dong Feng (SUFE) & Kernel QR with random features



M Random Fourier Features 11

Since both 7(w) and K(-,-) are real, the integral (4) converges when the complex
exponentials are replaced with cosines.

 Real-valued feature mapping

A real-valued mapping that satisfies the condition K(x,x") = Ew [¢(x,w)¢" (x',w)] can be obtained by

setting
é(x,w) = V2cos(wx + b),

where w is drawn from 7(w) and b is drawn uniformly from [0, 27].
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M Random Fourier Features I11

Random Fourier Features. Each component of the feature map ¢(x,w) = \/§cos(wa + b) projects x onto a random

direction w drawn from the Fourier transform m(w), and wraps this line onto the unit circle in R2. After transforming two points x
and x’ in this way, their inner product is an unbiased estimator of K(x, x/). The mapping additionally rotates this circle by a ra,

amount b and projects the points onto the interval [0, 1] (Rahimi and Recht, 2007).




M Examples

Some examples of shift invariant kernels and their Fourier transforms (Rahimi and Recht, 2007).

Kernel Name K(A) 7(w)
lan3 w3
Gaussian Kernel e~ 27 (2w %e_ 7

Laplacian Kernel | e 12l

Cauthy Kernel | [[y = e~ 1Al
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M Kernel Approximation

 Kernel approximation with random features

It is thus clear that we can adopt the standard Monte Carlo sampling method to estimate K(x,x’) by

Kwm (X7 X/) = <¢’M (X7 “))7 Dy (X/> w)>»

where ¢y (x,w) = Tlﬁ (B(x,w1), ..., B(x, wM))T is the feature map and ws,...,wwn are independently

sampled with respect to .

Remark: In addition to the shift invariant kernel, any kernel has the following integral
representation can use the above approximation,

K(x,x') = /Q B, w) (', w)dr(w),
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M RKHS Approximation

Q RKHS approximation with random features

Define a M-dimensional function space Hw related to ¢y (x) as
Har = {f| f(x) = u"pm(x),x € X,u € ]RM} .
It thus clear that Hy is a RKHS induced by kernel function Ky (x,x") = (¢ (%, w), @y (X', w)). For

f=uToum(x) € Hum,g = 27 pm(x) € Hum, we define their inner product in Har as (f, g)z,, = u"z. And the
corresponding norm of f in Hy is ||[f]jx,, = VuTu = ||uf|2.
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A lllustration

. .
Original Kernel nappe RF-based Kernel
K(x,x') Ky (x,x")
Original RKHS RF-based RKHS
Hk Hm
t t

Higher dimension space to lower dimension space

A simple illustration of kernel and RKHS approximation using RF.
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M KQR with Random Features I

Different from KQR, KQR with random features (KQR-RF) estimates a function in the approximation
RKHS Hwm

o1
fa,p,n = argmin = > pr (y — £(x)) + Alfll 3, (6)
feHm | | (iy)eD
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M KQR with Random Features II

Q Computation

According to the representer theorem, the solution of (3) with random features can be written as
fupa(x) = T Py (x), (7)
and the optimization problem becomes
D]
0 = argmin — Z pr(yi —u" Py (xi)) + AuTu. (8)
ueRM |D| =il
v

Notably, leveraging random features allows us to reformulate the initial problem into
linear quantile regression augmented by a ridge penalty, reducing the number of
parameters to be M < |D].
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M Theoretical Goal

The objective of KQR-RF is to find an estimator that minimizes the following expected
risk

£(f) = /X oy = 160)dp(xy).

and we evaluate the performance of KRR-RF by the excess risk £(f) — £(f%), or the
L%X—norm of the difference ||f — fiHi
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M Definitions and Assumptions I

Definition 1 (Integral operators)

For any f € Lf, »» We define the integral operators by the kernel K and Ky as

LKf:/XK(X, ~)f(X)dp;(7

LMf:/ KM(X,~)f(X)dp,Y.
X

Definition 2 (Effective dimension)

For A > 0, we define the effective dimension of kernel K and Ky as

N\)= Tr((Lk + A) " 'Lx),
Nu(A)= Tr((Lm + AI) "' Lp).
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M Definitions and Assumptions II

Assumption 1 (Bounded and continuous random features)

Assume kernel K has the integral representation defined in (5) with ¢ bounded and continuous in both
variables, that is, there exists some constant x > 1 such that |¢(x,w)| < k for any x € X and w € Q. The
associated RKHS Hk is separable.

Assumption 2 (Source condition)

Suppose there exists R > 0, r > 0 and h, € Lgx such that
fr = Lih,, (9)

where ||h-|, < R and Lk is the r-th power of Lk.
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M Definitions and Assumptions III

@ The parameter r controls the size of the functional class of fi. When r € [1/2, 1], the functional class
C is a subset of the assumed RKHS Hxk, so we have ff € Hkx. When r € (0,1/2), the functional class
C is larger than the assumed RKHS Hxk, and there exists some cases where f; ¢ Hx.

@ Existing literature on KQR and kernel methods with Lipschitz continuous loss functions often
assumes that r = 1/2 (Bach, 2017; Sun et al., 2018; Li et al., 2021) or r € [1/2, 1] (Lian, 2022),
corresponding to the realizable setting ff € Hk. However, our analysis further allows r € (0,1/2),
relating to the agnostic setting £ ¢ Hk.

Assumption 3 (Capacity condition)

For A > 0, there exists Q > 0 and v € [0, 1] such that
N < QM.
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M Definitions and Assumptions IV

e For kernel ridge reression (KRR) and Kernel ridge regression with random features
(KRR-RF), the minimax optimal capacity-dependent rate has been shown to be

O(|D|2YQTW) (Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017).

@ Whether KQR-RF can achieve the above optimal learning rate even under the
agnostic settings?

Assumption 4 (Adaptive self-calibration condition)

Let fy|«(-) denote the conditional density function of y given x. Suppose that sup,p fy|x(t) < c1 for ¢c; > 0.
Furthermore, there exist some universal constants ¢,&’,ce > 0 that are independent with x and y, such
that for any y € B(f:(x), ) and |§] < €', the following inequality holds almost surely,

‘Fy\X(y +94) — Fy\X(Y)| > caldl, (11)

where B(fr(x),€) = {y | |y — f(x)| < e} denotes the ball centered at f;(x) with radius e, and Fy<(-) is the
cumulative distribution function of y given x.
<z’
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M Definitions and Assumptions V

e For example, if y has a density that is bounded away from zero on some compact
interval around f%(x), then Assumption 4 holds. More importantly, we do not impose
any moment condition on the distribution of y.

@ It is also worth noting that Assumption 3.6 is weaker than Condition 2 in He and Shi
(1994) where the density function of y is lower bounded everywhere by some positive
constant. It is also weaker than Condition D.1 in Belloni and Chernozhukov (2011)
requiring the conditional density of Y given x to be continuously differentiable and
bounded away from zero uniformly for all 7 € (0,1) and all x in the support X.

@ The special case when ¢ = 0 aligning with the self-calibration condition also appeared
in Shen et al. (2021); Madrid Padilla and Chatterjee (2022).
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M Existing Theorem

Assume there exists a function f such that f; = argming., & (f). Under some technical assumptions?®,
and A = O(|D|™"), when the number of random features satisfies

M 2 [D|? log|D],
and |D| is sufficiently large, there holds
; 1
E(fn.p.,x) — E(f) = o — I3 = O(D|™2),

with probability near to 1.

#Assumption 1, Assumption 2 with r = 1/2, eigenvalue decaying assumption (stronger than Assumption
3), and the local strongly convex assumption which can be derived from Assumption 4.
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M Sharper Learning Rates for KQR-RF I

Under Assumptions 1-4, if r € (0, 1], v € [0, 1], and set A = |D|_ﬁ, when the number of random features
satisfies

M > [D|=%, for e (0,1/2);
(2r—1)y+1
M > |D| 2%, for re[l1/2,1],
and |D| is sufficiently large, there holds

__o2r .
E(fmpr) — E(E) < Ifmp,x — f:||?, = O(|D|” =+ log® |D|),

with probability near to 1.
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M Sharper Learning Rates for KQR-RF II

@ The capacity-dependent learning rates obtained in Theorem 1 align with those of KRR (Caponnetto
and De Vito, 2007) and KRR-RF (Rudi and Rosasco, 2017), which is minimax optimal and thus can
not be improved any further.

@ Compared to Lian (2022), we relax the regularity condition from r € [1/2,1] to r € (0, 1], covering a
wider range of scenarios.

Theorem 1 uses the naive uniform sampling strategy for the random features (generate ¢(x,w) with 7w(w)),
which is independent of the training samples. This may lead to an unnecessary burden in computation.
Inspired by the data-dependent sampling strategy Bach (2017); Avron et al. (2017); Rudi and Rosasco
(2017), we aim to demonstrate in the upcoming section how these strategies enable attaining optimal
learning rates across all agnostic settings r € (0,1] with a reduced number of random features in the next
section.
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M Refined Analysis: Beyond Uniform Sampling I

Assumption 5 (Compatibility condition)

Define the maximum dimension of random features as

2

: (12)

Px

Now() = sup H(LK D) Y26(, w)

where A > 0. There exist constants a € [0,1] and F > 0, such that Moo (X) < FATS.

Recall the definition of A'(\) in Definition 2. N'(\) and N (A\) measure the average and
supreme capacities of Hxk, respectively, so we have

2 2
N = Eo ||k + A7 26(,w)|| < sup [[(Lx + 207 720(,0)| =

px weN px

where E¢, denotes the expectation taking over w.
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M Refined Analysis: Beyond Uniform Sampling II

Under Assumptions 1-5, if r € (0, 1], v € [0, 1], and set A = |D|_ﬁ, when the number of random features
satisfies

M > |D|=+, for 1€ (0,1/2);
2r—1)(1+y—a)+a
M>D|" =y, for rel[l/21],
and |D| is sufficiently large, there holds

__2r
E(fu,p.) — E() < |lfw,p.x — £5]|5 = O(ID|” 7+ log® DJ),

with probability near to 1.
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M Refined Analysis: Beyond Uniform Sampling III

e The above capacity-dependent learning rate is the same as that of Theorem 1, while

1 @
the required number of random features reduces from O(|D|z+7) to O(|D|2+7) when
Cr—1)(14+y—a)+a

+
re (0,1/2) and O(|D\ = ) to O(|D| 2Zrty ) when r € [1/2, 1], owing to the
additional Assumption 5.
e By adopting a favorable sampling strategy called leverage scores sampling strategy,
we can further reduce the required number of random features and achieve the
optimal learning rates across the entire range of r € (0, 1].

Leverage scores sampling

Given the integral representation of kernel K as stated in (5), we adopt the leverage scores sampling
strategy (Bach, 2017; Avron et al., 2017) by employing an importance ratio denoted as
q(w) = Ix(w)/ [, Ir(w)dm(w), where 1x(w) = ||(Lk + A)"Y2¢(-,w)||%,,. Consequently, the random

features are computed as gzﬁl(x, w) = [q(w)]"Y2¢p(x,w) and exhibit a distribution m(w) = q(w)m(w).
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M Refined Analysis: Beyond Uniform Sampling IV

e As pointed out in Rudi and Rosasco (2017), the random features provide the integral
representation of K and satisfy Assumption 5 with ov = « indicating that

N(A) =N (N).

Under Assumptions 1-5, if random features are sampled according to the leverage scores sampling strategy,
1
r e (0,1], v € [0,1], and set A = |[D|” z+7, when the number of random features satisfies

M > |D|=F, for 1€ (0,1/2);
M > D|*=5, for re[l/2,1],
and |D| is sufficiently large, there holds
5 _or 5
E(fm,p,2) — E(F) < |Ifw,px — ££[|5 = O(ID|” =47 log” |DJ),

with probability near to 1.
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M Refined Analysis: Beyond Uniform Sampling V

Exponent ¢ for leverage scores sampling

Exponent ¢ for uniform sampling :
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0 -00 0

0.6 0.7 08 09 1
r

Comparison between the number of random features M = O(|D|®) required for uniform sampling (o = 1, left) and leverage
scores sampling (o = «, right) in the realizable case.

-00




M Refined Analysis: Beyond Uniform Sampling VI

Exponent ¢ for uniform sampling

Exponent ¢ for leverage scores sampling

1 10

0.1 0.2 0.3 04 0.5

scores sampling (o = «, right) in the agnostic case.
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MComparisons to the Related Work

Summary of conditions for derived learning rates in different methods.

Methods Regularity condition Capa'uc} ty Random centers M Learning rate
condition
KRR (Caponnetto and De Vito, 2007) re(1/2,1] v €[0,1] x \Drﬁ
KRR (Zhang et al., 2023) re(0,1] v €0,1] X \D\’ﬁ
(e Py
KRR-RF-Uniform (Rudi and Rosasco, 2017) re(1/2,1] v €[0,1] [D|~ i \Dr?szW
== ;
KRR-RF-Leverage (Rudi and Rosasco, 2017) re(1/2,1] ve0,1] D=5 DI %5
KRR-RF-Uniform (Li et al., 2023) re0,1,2r+7>1 | y€0,1] D] 7=
KRR-RF-Leverage (Li et al., 2023) re(0,1] vy €[0,1] |D|” 7
KQR (Lian, 2022) re[1/2,1] v € 0,1] x
Lip-RF-Uniform (Rahimi and Recht, 2008) R= 17 v €[0,1] D]
Lip-RF-Leverage Bach (2017) r=1/2 v e[0,1 |D|2
Lip-RF-Uniform (Li et al., 2021) r=1/2 v e[0,1 |D|
Lip-RF-Leverage (Li et al., 2021) r=1/2 y€[0,1 |D|2
KSVM-RF (Sun et al., 2018) r=1/2 ve0,1] |D|=H
D|=,r € (0,1/2
KQR-RF (Theorem 2) re(0,1] Yelo,1] d2lere (0,1/2)
|D| 2y ,re(1/2,1]
T
=
KQR-RF-Uniform (Theorem 1) re (0,1] vy €[0,1] “::2‘,,:)11: €(0.1/2) |D| "z
DI “F re[1/2,1]
Dz ,1/2 -
KQR-RF-Leverage (Corollary 1) re (0,1] ye1] D e 0.1/2) ID|" =5

,1 € [1/2,1]
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M Simulation Study I

Q Spline kernel

We consider the spline kernel of order q, defined as

[ee]

Aq (X, X/) _ Z eQﬂikxe—Qwikx’|k|—q7

k=—o00

where x,x’ € [0,1], and q € R. According to the property of spline kernel, we have

1
/ Aq(x,2)Ag (¥',2) dz = At (x,X'),
0

for any q,q" € R. Consequently, for r € (0,1] and v € [0, 1], let K(x,x") = A1 (x,x’), and its corresponding
Y
random feature is ¢(x, w) = A21 (x,w) with w ~ U(0, 1).
il
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M Simulation Study II

Q Simulation setting

Data are generated from the following model

where € ~ N(0,0.01) and x ~ U(0, 1).

To graphically show the true and estimated quantile function, we consider three different
settings:

Q@ worst case (r=0,7=1);
@ general case (r=1/2,v=1);
@ most benign case (r = 1,7 =0).
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MResults 1

Quantile curves forr =0, y=1
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MResults 11

Estimated quantile curves forr =0,y=1 Estimated quantile curves forr = 0.5, y=1 Estimated quantile curves forr =1,y=0
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MLcarning Rates Validation

e To validate the derived learning rates, i.e., E(fup ) — E(fF) = O(|D|72f27i7), we
estimate the log-transformed excess risk on the testing data and compared it with the
theoretical one. We consider two agnostic cases (r = 0.2, =0.1 and r = 0.4,y = 0.2)
and two realizable cases (r = 0.5,7 = 0.1 and r = 0.8,y = 0.2) for better illustration.
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MResults 111

r=04,y=02

70~
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log emprical excess risk
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log number of training data log number of training data

r=05y=01 r=08,y=02
75

.
g0-

85~

0.0~

log emprical excess risk
log emprical excess risk
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20

Log empirical excess risk for r = 0.2,y = 0.1 (left top), r = 0.4,y = 0.2 (right top), r = 0.5, = 0.1 (left bottom) an\
r = 0.8,y = 0.2 (right bottom) when 7 = 0.5.




A Discussion

e First two figures shows that KQR-RF can estimate the quantile functions very well
both in realizable and agnostic settings.

o Last figure that the data points are uniformly distributed on both sides of a straight
line, which verifies the derived learning rate. To further investigate the constants in
the big-O bounds, we calculate the slope of each learning curve and compare it to
—inw. The slope constants are 0.81,1.21,1.63,0.95 in four scenarios. This also
highlights our contribution in deriving the sharper and capacity-dependent learning

rates.
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