

Optimal Kernel Quantile Learning with Random Features

Caixing Wang, Xingdong Feng

School of Statistics and Management & Institute of Data Science and Statistics
Shanghai University of Finance and Economics, China

July 9, 2024

Outline

1 Introduction

2 Method

3 Theoretical Results

4 Numerical Experiments

5 Summary

Introduction I

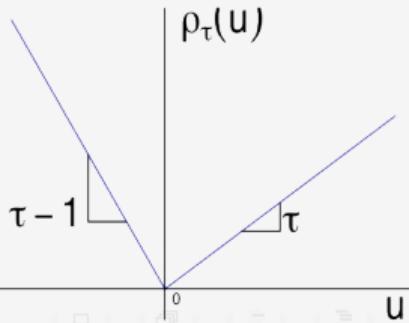
Why Quantile Regression?

- Reason 1: Quantile regression allows us to study the impact of predictors on different quantiles of the response distribution, and thus provides a **complete picture** of the relationship between responses and covariates.
- Reason 2: **Robust** to outliers in response observations.
- Reason 3: Estimation and inference are **distribution-free**, and **heterogeneity** is usually allowed in quantile regression models.

Loss Function

$$\rho_\tau(u) = u\{\tau - \mathcal{I}(u < 0)\},$$

where \mathcal{I} is the indicator function, and τ is the quantile level.



Introduction II

Figure 1: Financial Crisis

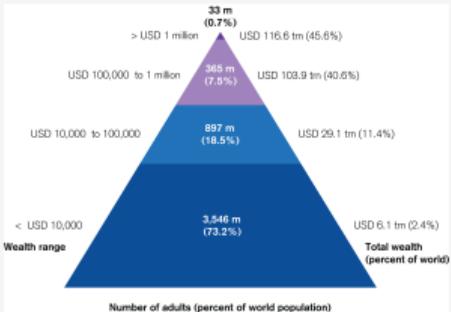


Figure 2: Income Pyramid

Figure 3: Powerful Typhoon

Figure 4: Air Pollution

Introduction III

Suppose a random pair (x, y) is drawn from an unknown joint distribution $\rho(x, y)$, consider the following **quantile regression model**

$$y = f_\tau^*(x) + \varepsilon, \quad (1)$$

where

- $y \in \mathbb{R}$ is the scalar response;
- $x \in \mathcal{X} \subset \mathbb{R}^p$ is the p -dimensional vector of the covariate;
- ε is the model error which satisfies $\mathbb{P}(\varepsilon_i < 0 | x) = \tau$ for $\tau \in (0, 1)$.

Model (1) implies the following model.

Nonparametric quantile regression

$$Q_\tau(y_i | x) = f_\tau^*(x), \quad \tau \in (0, 1),$$

where $Q_\tau(\cdot | x)$ refers to the τ -th conditional quantile of the response y given the covariate x .

Introduction IV

The method of kernel quantile regression (KQR) is based on the idea of a reproducing kernel Hilbert space.

Reproducing Kernels

Any symmetric, bounded and positive semi-definite kernel function $K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defines a reproducing kernel Hilbert space (RKHS), denoted by \mathcal{H}_K . An important property of \mathcal{H}_K is the **reproducing property** that for any $f \in \mathcal{H}_K$, there holds

$$\langle f, K(x, \cdot) \rangle_K = f(x),$$

where $\langle \cdot, \cdot \rangle_K$ denotes the inner product in \mathcal{H}_K . Its equipped norm is defined as $\|\cdot\|_K^2 = \langle \cdot, \cdot \rangle_K$.

Introduction V

Consider a standard supervised learning problem that we have a sample $D = \{(x_i, y_i)\}_{i=1}^{|D|}$, KQR estimates a function in the RKHS \mathcal{H}_K by minimizing the check loss function combined with a penalty based on the squared Hilbert norm

$$f_{D,\lambda} = \operatorname{argmin}_{f \in \mathcal{H}_K} \frac{1}{|D|} \sum_{i=1}^{|D|} \rho_\tau(y_i - f(x_i)) + \lambda \|f\|_K^2, \quad (2)$$

where $|D|$ is the cardinality of D and λ is the regularization parameter controlling the model smoothness.

Reviews and Motivation I

Computation

According to the **representer theorem** (Wahba, 1990), the solution of this optimization task (2) is of finite form as given by $f_{D,\lambda}(x) = \sum_{i=1}^{|D|} \alpha_i K(x, x_i) = \boldsymbol{\alpha}^T K_N(x)$. With this solution plugged into (2), the optimization problem can be reformulated as

$$\hat{\boldsymbol{\alpha}} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{|D|}}{\operatorname{argmin}} \frac{1}{|D|} \sum_{i=1}^{|D|} \rho_\tau(y_i - \boldsymbol{\alpha}^T K_N(x_i)) + \lambda \boldsymbol{\alpha}^T K \boldsymbol{\alpha}, \quad (3)$$

where $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_{|D|})^T \in \mathbb{R}^{|D|}$ are the representer coefficients and $K_N(x) = (K(x_1, x), \dots, K(x_{|D|}, x))^T \in \mathbb{R}^{|D|}$, and $K = \{K(x_i, x_j)\}_{i,j=1}^{|D|}$ is the Gram matrix.

- Dual optimization (Takeuchi et al., 2006; Feng et al., 2023);
- Path-following algorithm (Li et al., 2007);
- ADMM algorithm (Boyd et al., 2011; Wang et al., 2024).

Existing issues

- The scalability of KQR for large datasets is limited due to the **expensive computational complexity** ($\mathcal{O}(|D|^3)$) and **storage requirements** ($\mathcal{O}(|D|^2)$) when $|D|$ is large.
- The theoretical investigation of KQR is not clear and deep enough (**Suboptimal or capacity-independent**).
- Most work assume the **realizable setting**, i.e., $f^* \in \mathcal{H}_K$, does KQR work in the **agnostic setting**, i.e., $f_\rho \notin \mathcal{H}_K$?

Question: Can we find some accelerated methods that can achieve a **optimal trade-off** between the computation and theory, especially in the agnostic settings?

Random Fourier Features I

The following classical theorem from harmonic analysis provides the key insight behind random feature mapping:

⌚ Bochner's theorem

A continuous kernel $K(x, x') = K(x - x')$ on \mathbb{R}^p is positive definite if and only if $K(x - x')$ is the Fourier transform of a non-negative measure.

⌚ Unbiased feature mapping

If a shift-invariant kernel $K(\cdot, \cdot)$ is properly scaled, Bochner's theorem guarantees that its Fourier transform $\pi(\omega)$ is a proper probability distribution. Define $\phi(x, \omega) = e^{i\omega^T x}$ we have

$$K(x, x') = K(x - x') = \int_{\mathbb{R}^p} \pi(\omega) e^{i\omega^T (x - x')} d\omega = \mathbb{E}_{\omega} [\phi(x, \omega) \phi^*(x', \omega)], \quad (4)$$

where $*$ denoting the Hermitian transpose. So $\phi(x, \omega) \phi^*(x', \omega)$ is an **unbiased estimator** of $K(x, x')$ when ω is drawn from $\pi(\omega)$.

Since both $\pi(\omega)$ and $K(\cdot, \cdot)$ are real, the integral (4) converges when the complex exponentials are replaced with cosines.

Real-valued feature mapping

A real-valued mapping that satisfies the condition $K(x, x') = \mathbb{E}_\omega [\phi(x, \omega)\phi^*(x', \omega)]$ can be obtained by setting

$$\phi(x, \omega) = \sqrt{2} \cos(\omega^T x + b),$$

where ω is drawn from $\pi(\omega)$ and b is drawn uniformly from $[0, 2\pi]$.

Random Fourier Features III

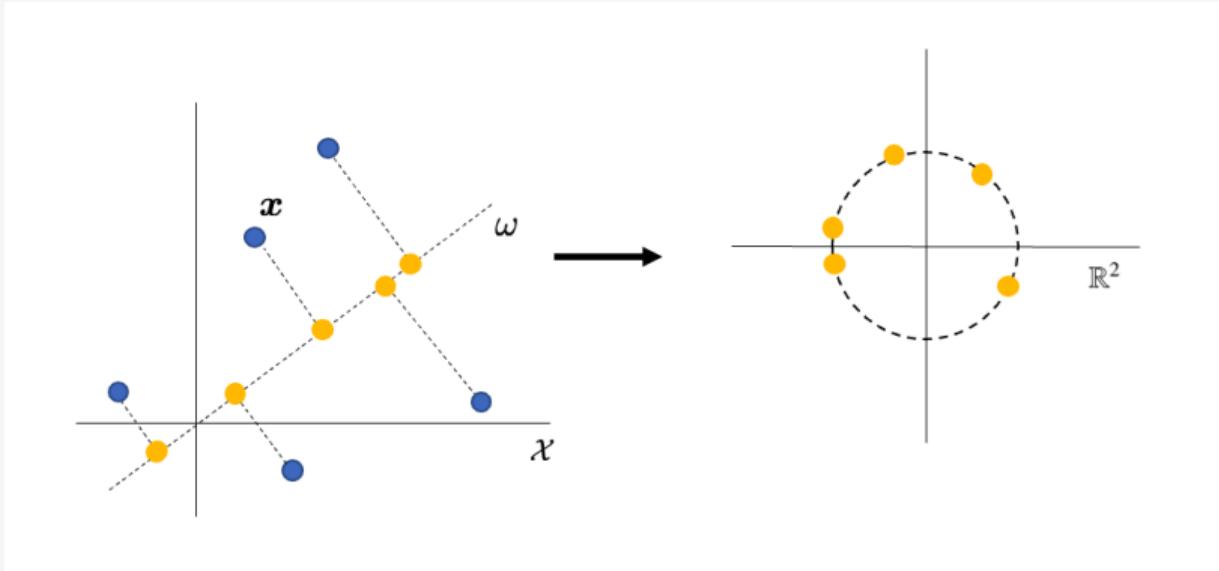


Figure 5: Random Fourier Features. Each component of the feature map $\phi(x, \omega) = \sqrt{2} \cos(\omega^T x + b)$ projects x onto a random direction ω drawn from the Fourier transform $\pi(\omega)$, and wraps this line onto the unit circle in \mathbb{R}^2 . After transforming two points x and x' in this way, their inner product is an unbiased estimator of $K(x, x')$. The mapping additionally rotates this circle by a random amount b and projects the points onto the interval $[0, 1]$ (Rahimi and Recht, 2007).

Examples

Table 1: Some examples of shift invariant kernels and their Fourier transforms (Rahimi and Recht, 2007).

Kernel Name	$K(\Delta)$	$\pi(\omega)$
Gaussian Kernel	$e^{-\frac{\ \Delta\ _2^2}{2}}$	$(2\pi)^{\frac{D}{2}} e^{-\frac{\ \omega\ _2^2}{2}}$
Laplacian Kernel	$e^{-\ \Delta\ _1}$	$\prod_d \frac{1}{\pi(1+\omega_d^2)}$
Cauthy Kernel	$\prod_d \frac{1}{(1+\Delta_d^2)}$	$e^{-\ \Delta\ _1}$

Kernel Approximation

Kernel approximation with random features

It is thus clear that we can adopt the standard Monte Carlo sampling method to estimate $K(x, x')$ by

$$K_M(x, x') = \langle \phi_M(x, \omega), \phi_M(x', \omega) \rangle,$$

where $\phi_M(x, \omega) = \frac{1}{\sqrt{M}}(\phi(x, \omega_1), \dots, \phi(x, \omega_M))^T$ is the feature map and $\omega_1, \dots, \omega_M$ are independently sampled with respect to π .

Remark: In addition to the shift invariant kernel, any kernel has the following integral representation can use the above approximation,

$$K(x, x') = \int_{\Omega} \phi(x, \omega) \phi(x', \omega) d\pi(\omega), \quad (5)$$

RKHS approximation with random features

Define a M -dimensional function space \mathcal{H}_M related to $\phi_M(x)$ as

$$\mathcal{H}_M = \left\{ f \mid f(x) = u^T \phi_M(x), x \in \mathcal{X}, u \in \mathbb{R}^M \right\}.$$

It thus clear that \mathcal{H}_M is a RKHS induced by kernel function $K_M(x, x') = \langle \phi_M(x, \omega), \phi_M(x', \omega) \rangle$. For $f = u^T \phi_M(x) \in \mathcal{H}_M, g = z^T \phi_M(x) \in \mathcal{H}_M$, we define their inner product in \mathcal{H}_M as $\langle f, g \rangle_{\mathcal{H}_M} = u^T z$. And the corresponding norm of f in \mathcal{H}_M is $\|f\|_{\mathcal{H}_M} = \sqrt{u^T u} = \|u\|_2$.

Illustration

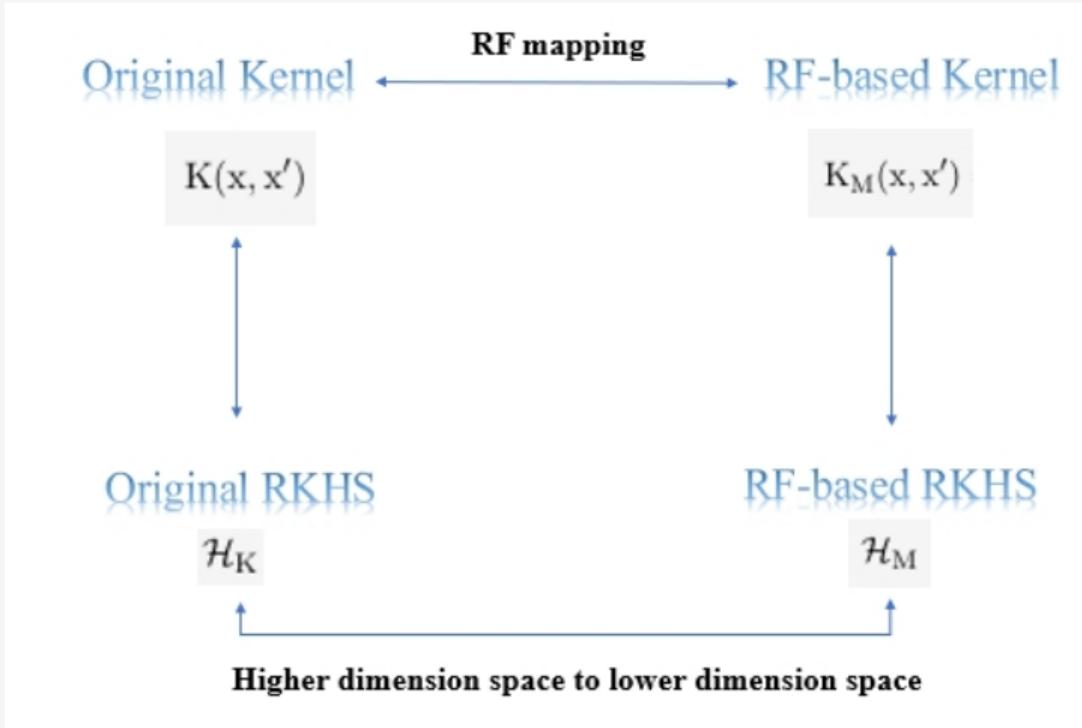


Figure 6: A simple illustration of kernel and RKHS approximation using RF.

Bookmark KQR with Random Features I

📎 KQR-RF

Different from KQR, KQR with random features (KQR-RF) estimates a function in the approximation RKHS \mathcal{H}_M

$$f_{M,D,\lambda} = \operatorname{argmin}_{f \in \mathcal{H}_M} \frac{1}{|D|} \sum_{(x,y) \in D} \rho_\tau(y - f(x)) + \lambda \|f\|_{\mathcal{H}_M}^2, \quad (6)$$

KQR with Random Features II

Computation

According to the representer theorem, the solution of (3) with random features can be written as

$$f_{M,D,\lambda}(x) = \hat{u}^T \phi_M(x), \quad (7)$$

and the optimization problem becomes

$$\hat{u} = \underset{u \in \mathbb{R}^M}{\operatorname{argmin}} \frac{1}{|D|} \sum_{i=1}^{|D|} \rho_\tau(y_i - u^T \phi_M(x_i)) + \lambda u^T u. \quad (8)$$

Notably, leveraging random features allows us to reformulate the initial problem into linear quantile regression augmented by a ridge penalty, reducing the number of parameters to be $M \ll |D|$.

Theoretical Goal

The objective of KQR-RF is to find an estimator that minimizes the following expected risk

$$\mathcal{E}(f) = \int_{\mathcal{X} \times \mathbb{R}} \rho_\tau(y - f(x)) d\rho(x, y),$$

and we evaluate the performance of KRR-RF by the **excess risk** $\mathcal{E}(f) - \mathcal{E}(f_\tau^*)$, or the **$L^2_{\rho_X}$ -norm of the difference** $\|f - f_\tau^*\|_{\rho}^2$.

Definitions and Assumptions I

Definition 1 (Integral operators)

For any $f \in L^2_{\rho_{\mathcal{X}}}$, we define the integral operators by the kernel K and K_M as

$$L_K f = \int_{\mathcal{X}} K(x, \cdot) f(x) d\rho_{\mathcal{X}},$$
$$L_M f = \int_{\mathcal{X}} K_M(x, \cdot) f(x) d\rho_{\mathcal{X}}.$$

Definition 2 (Effective dimension)

For $\lambda > 0$, we define the effective dimension of kernel K and K_M as

$$\mathcal{N}(\lambda) = \text{Tr}((L_K + \lambda I)^{-1} L_K),$$
$$\mathcal{N}_M(\lambda) = \text{Tr}((L_M + \lambda I)^{-1} L_M).$$

Definitions and Assumptions II

Assumption 1 (Bounded and continuous random features)

Assume kernel K has the integral representation defined in (5) with ϕ bounded and continuous in both variables, that is, there exists some constant $\kappa \geq 1$ such that $|\phi(x, \omega)| \leq \kappa$ for any $x \in \mathcal{X}$ and $\omega \in \Omega$. The associated RKHS \mathcal{H}_K is separable.

Assumption 2 (Source condition)

Suppose there exists $R > 0$, $r > 0$ and $h_\tau \in L_{\rho_X}^2$ such that

$$f_\tau^* = L_K^r h_\tau, \quad (9)$$

where $\|h_\tau\|_\rho \leq R$ and L_K^r is the r -th power of L_K .

Definitions and Assumptions III

Remark

- The parameter r controls the size of the functional class of f_τ^* . When $r \in [1/2, 1]$, the functional class \mathcal{C} is a subset of the assumed RKHS \mathcal{H}_K , so we have $f_\tau^* \in \mathcal{H}_K$. When $r \in (0, 1/2)$, the functional class \mathcal{C} is larger than the assumed RKHS \mathcal{H}_K , and there exists some cases where $f_\tau^* \notin \mathcal{H}_K$.
- Existing literature on KQR and kernel methods with Lipschitz continuous loss functions often assumes that $r = 1/2$ (Bach, 2017; Sun et al., 2018; Li et al., 2021) or $r \in [1/2, 1]$ (Lian, 2022), corresponding to the realizable setting $f_\tau^* \in \mathcal{H}_K$. However, our analysis further allows $r \in (0, 1/2)$, relating to the agnostic setting $f_\tau^* \notin \mathcal{H}_K$.

Assumption 3 (Capacity condition)

For $\lambda > 0$, there exists $Q > 0$ and $\gamma \in [0, 1]$ such that

$$\mathcal{N}(\lambda) \leq Q^2 \lambda^{-\gamma}. \quad (10)$$

Definitions and Assumptions IV

- For kernel ridge regression (KRR) and Kernel ridge regression with random features (KRR-RF), the **minimax optimal capacity-dependent rate** has been shown to be $\mathcal{O}(|D|^{\frac{2r}{2r+\gamma}})$ (Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017).
- Whether KQR-RF can achieve the above optimal learning rate even under the agnostic settings?

Assumption 4 (Adaptive self-calibration condition)

Let $f_{y|x}(\cdot)$ denote the conditional density function of y given x . Suppose that $\sup_{t \in \mathbb{R}} f_{y|x}(t) \leq c_1$ for $c_1 > 0$. Furthermore, there exist some universal constants $\varepsilon, \varepsilon', c_2 > 0$ that are independent with x and y , such that for any $y \in \mathcal{B}(f_\tau^*(x), \varepsilon)$ and $|\delta| \leq \varepsilon'$, the following inequality holds almost surely,

$$|F_{y|x}(y + \delta) - F_{y|x}(y)| \geq c_2 |\delta|, \quad (11)$$

where $\mathcal{B}(f_\tau^*(x), \varepsilon) = \{y \mid |y - f_\tau^*(x)| \leq \varepsilon\}$ denotes the ball centered at $f_\tau^*(x)$ with radius ε , and $F_{y|x}(\cdot)$ is the cumulative distribution function of y given x .

Definitions and Assumptions V

- For example, if y has a density that is bounded away from zero on some compact interval around $f_\tau^*(x)$, then Assumption 4 holds. **More importantly, we do not impose any moment condition on the distribution of y .**
- It is also worth noting that Assumption 3.6 is **weaker than** Condition 2 in He and Shi (1994) where the density function of y is lower bounded everywhere by some positive constant. It is also **weaker than** Condition D.1 in Belloni and Chernozhukov (2011) requiring the conditional density of Y given x to be continuously differentiable and bounded away from zero uniformly for all $\tau \in (0, 1)$ and all x in the support \mathcal{X} .
- The special case when $\varepsilon = 0$ aligning with the **self-calibration condition** also appeared in Shen et al. (2021); Madrid Padilla and Chatterjee (2022).

Existing Theorem

Theorem 19 of Li et al. (2021)

Assume there exists a function $f_{\mathcal{H}}$ such that $f_{\mathcal{H}} = \operatorname{argmin}_{f \in \mathcal{H}_K} \mathcal{E}(f)$. Under some technical assumptions^a, and $\lambda = \mathcal{O}(|D|^{-1})$, when the number of random features satisfies

$$M \gtrsim |D|^{\frac{\gamma}{2}} \log |D|,$$

and $|D|$ is sufficiently large, there holds

$$\mathcal{E}(f_{M,D,\lambda}) - \mathcal{E}(f_{\mathcal{H}}) \asymp \|f_{M,D,\lambda} - f_{\mathcal{H}}\|_{\rho}^2 = \mathcal{O}(|D|^{-\frac{1}{2}}),$$

with probability near to 1.

^a Assumption 1, Assumption 2 with $r = 1/2$, eigenvalue decaying assumption (stronger than Assumption 3), and the local strongly convex assumption which can be derived from Assumption 4.

Sharper Learning Rates for KQR-RF I

Theorem 1

Under Assumptions 1-4, if $r \in (0, 1]$, $\gamma \in [0, 1]$, and set $\lambda = |D|^{-\frac{1}{2r+\gamma}}$, when the number of random features satisfies

$$M \gtrsim |D|^{\frac{1}{2r+\gamma}}, \quad \text{for } r \in (0, 1/2);$$

$$M \gtrsim |D|^{\frac{(2r-1)\gamma+1}{2r+\gamma}}, \quad \text{for } r \in [1/2, 1],$$

and $|D|$ is sufficiently large, there holds

$$\mathcal{E}(f_{M,D,\lambda}) - \mathcal{E}(f_\tau^*) \asymp \|f_{M,D,\lambda} - f_\tau^*\|_\rho^2 = \mathcal{O}(|D|^{-\frac{2r}{2r+\gamma}} \log^2 |D|),$$

with probability near to 1.

Sharper Learning Rates for KQR-RF II

- The capacity-dependent learning rates obtained in Theorem 1 align with those of KRR (Caponnetto and De Vito, 2007) and KRR-RF (Rudi and Rosasco, 2017), which is **minimax optimal** and thus can not be improved any further.
- Compared to Lian (2022), we relax the regularity condition from $r \in [1/2, 1]$ to $r \in (0, 1]$, covering a wider range of scenarios.

Remark

Theorem 1 uses **the naive uniform sampling strategy** for the random features (generate $\phi(x, \omega)$ with $\pi(\omega)$), which is independent of the training samples. This may lead to an unnecessary burden in computation. Inspired by **the data-dependent sampling strategy** Bach (2017); Avron et al. (2017); Rudi and Rosasco (2017), we aim to demonstrate in the upcoming section how these strategies enable attaining optimal learning rates across all agnostic settings $r \in (0, 1]$ with a **reduced number of random features** in the next section.

Refined Analysis: Beyond Uniform Sampling I

Assumption 5 (Compatibility condition)

Define the maximum dimension of random features as

$$\mathcal{N}_\infty(\lambda) = \sup_{\omega \in \Omega} \left\| (L_K + \lambda I)^{-1/2} \phi(\cdot, \omega) \right\|_{\rho_X}^2, \quad (12)$$

where $\lambda > 0$. There exist constants $\alpha \in [0, 1]$ and $F > 0$, such that $\mathcal{N}_\infty(\lambda) \leq F\lambda^{-\alpha}$.

Recall the definition of $\mathcal{N}(\lambda)$ in Definition 2. $\mathcal{N}(\lambda)$ and $\mathcal{N}_\infty(\lambda)$ measure the average and supreme capacities of \mathcal{H}_K , respectively, so we have

$$\mathcal{N}(\lambda) = E_{\omega} \left\| (L_K + \lambda I)^{-1/2} \phi(\cdot, \omega) \right\|_{\rho_X}^2 \leq \sup_{\omega \in \Omega} \left\| (L_K + \lambda I)^{-1/2} \phi(\cdot, \omega) \right\|_{\rho_X}^2 = \mathcal{N}_\infty(\lambda),$$

where E_{ω} denotes the expectation taking over ω .

Refined Analysis: Beyond Uniform Sampling II

Theorem 2

Under Assumptions 1-5, if $r \in (0, 1]$, $\gamma \in [0, 1]$, and set $\lambda = |D|^{-\frac{1}{2r+\gamma}}$, when the number of random features satisfies

$$M \gtrsim |D|^{\frac{\alpha}{2r+\gamma}}, \quad \text{for } r \in (0, 1/2);$$

$$M \gtrsim |D|^{\frac{(2r-1)(1+\gamma-\alpha)+\alpha}{2r+\gamma}}, \quad \text{for } r \in [1/2, 1],$$

and $|D|$ is sufficiently large, there holds

$$\mathcal{E}(f_{M,D,\lambda}) - \mathcal{E}(f_\tau^*) \asymp \|f_{M,D,\lambda} - f_\tau^*\|_\rho^2 = \mathcal{O}(|D|^{-\frac{2r}{2r+\gamma}} \log^2 |D|),$$

with probability near to 1.

Refined Analysis: Beyond Uniform Sampling III

- The above capacity-dependent learning rate is the same as that of Theorem 1, while the required number of random features reduces from $\mathcal{O}(|D|^{\frac{1}{2r+\gamma}})$ to $\mathcal{O}(|D|^{\frac{\alpha}{2r+\gamma}})$ when $r \in (0, 1/2)$ and $\mathcal{O}(|D|^{\frac{(2r-1)\gamma+1}{2r+\gamma}})$ to $\mathcal{O}(|D|^{\frac{(2r-1)(1+\gamma-\alpha)+\alpha}{2r+\gamma}})$ when $r \in [1/2, 1]$, owing to the additional Assumption 5.
- By adopting a favorable sampling strategy called **leverage scores sampling strategy**, we can further reduce the required number of random features and achieve the optimal learning rates across the entire range of $r \in (0, 1]$.

Leverage scores sampling

Given the integral representation of kernel K as stated in (5), we adopt the leverage scores sampling strategy (Bach, 2017; Avron et al., 2017) by employing an importance ratio denoted as

$q(\omega) = l_\lambda(\omega) / \int_\omega l_\lambda(\omega) d\pi(\omega)$, where $l_\lambda(\omega) = \|(L_K + \lambda I)^{-1/2} \phi(\cdot, \omega)\|_{\rho_X}^2$. Consequently, the random features are computed as $\phi_1(x, \omega) = [q(\omega)]^{-1/2} \phi(x, \omega)$ and exhibit a distribution $\pi_1(\omega) = q(\omega) \pi(\omega)$.

Refined Analysis: Beyond Uniform Sampling IV

- As pointed out in Rudi and Rosasco (2017), the random features provide the integral representation of K and satisfy Assumption 5 with $\alpha = \gamma$ indicating that $\mathcal{N}(\lambda) = \mathcal{N}_\infty(\lambda)$.

Corollary 1

Under Assumptions 1-5, if random features are sampled according to the leverage scores sampling strategy, $r \in (0, 1]$, $\gamma \in [0, 1]$, and set $\lambda = |D|^{-\frac{1}{2r+\gamma}}$, when the number of random features satisfies

$$M \gtrsim |D|^{\frac{\gamma}{2r+\gamma}}, \quad \text{for } r \in (0, 1/2);$$

$$M \gtrsim |D|^{\frac{2r+\gamma-1}{2r+\gamma}}, \quad \text{for } r \in [1/2, 1],$$

and $|D|$ is sufficiently large, there holds

$$\mathcal{E}(f_{M,D,\lambda}) - \mathcal{E}(f_\tau^*) \asymp \|f_{M,D,\lambda} - f_\tau^*\|_\rho^2 = \mathcal{O}(|D|^{-\frac{2r}{2r+\gamma}} \log^2 |D|),$$

with probability near to 1.

Refined Analysis: Beyond Uniform Sampling V

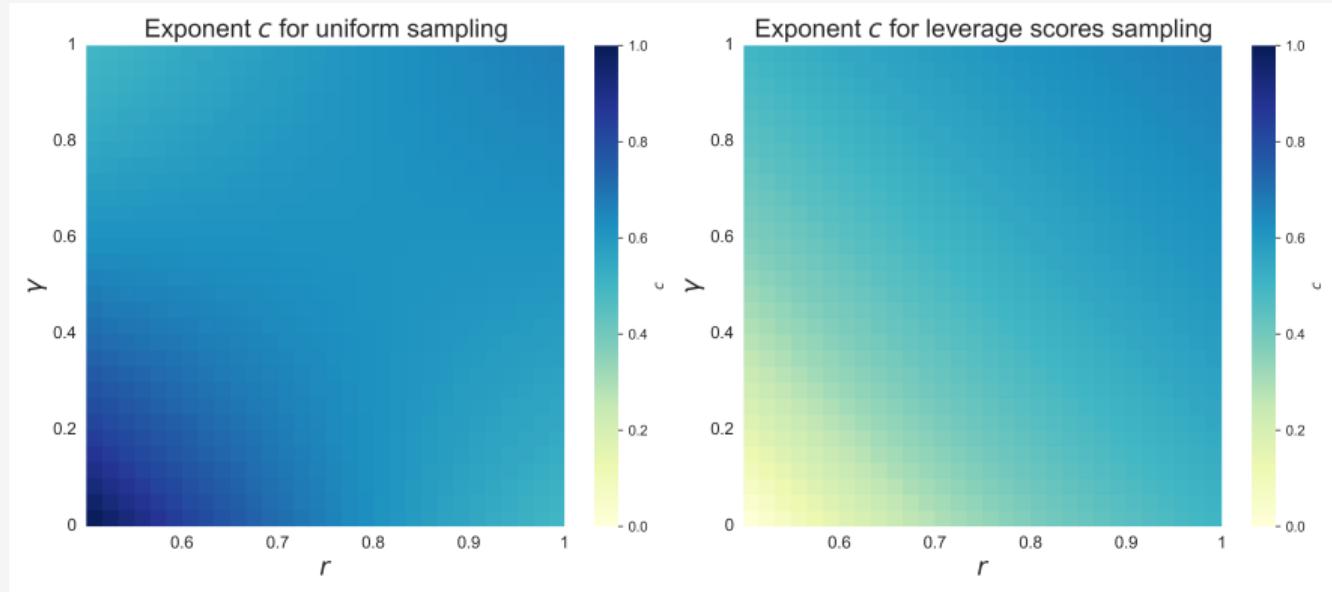


Figure 7: Comparison between the number of random features $M = \mathcal{O}(|D|^c)$ required for uniform sampling ($\alpha = 1$, left) and leverage scores sampling ($\alpha = \gamma$, right) in the realizable case.

Refined Analysis: Beyond Uniform Sampling VI

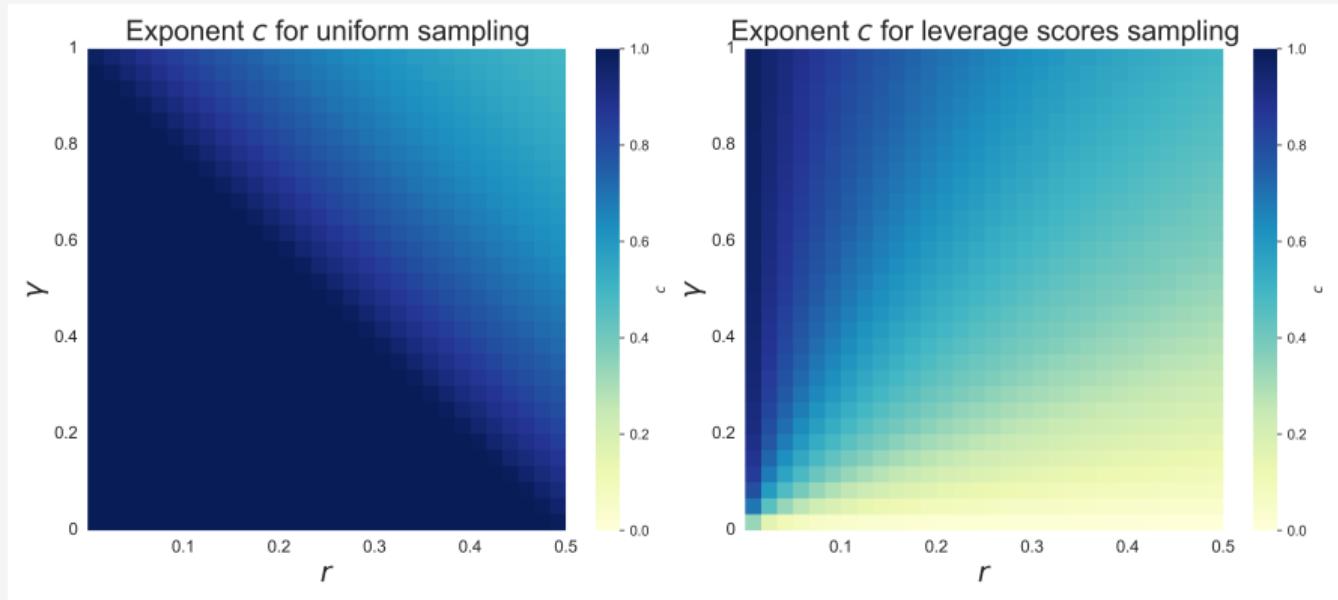


Figure 8: Comparison between the number of random features $M = \mathcal{O}(|D|^c)$ required for uniform sampling ($\alpha = 1$, left) and leverage scores sampling ($\alpha = \gamma$, right) in the agnostic case.

Comparisons to the Related Work

Table 2: Summary of conditions for derived learning rates in different methods.

Methods	Regularity condition	Capacity condition	Random centers M	Learning rate
KRR (Caponnetto and De Vito, 2007)	$r \in [1/2, 1]$	$\gamma \in [0, 1]$	×	$ D ^{-\frac{2r}{2r+\gamma}}$
KRR (Zhang et al., 2023)	$r \in (0, 1]$	$\gamma \in [0, 1]$	×	$ D ^{-\frac{2r}{2r+\gamma}}$
KRR-RF-Uniform (Rudi and Rosasco, 2017)	$r \in [1/2, 1]$	$\gamma \in [0, 1]$	$ D ^{-\frac{(2r-1)\gamma+1}{2r+\gamma}}$	$ D ^{-\frac{2r}{2r+\gamma}}$
KRR-RF-Leverage (Rudi and Rosasco, 2017)	$r \in [1/2, 1]$	$\gamma \in [0, 1]$	$ D ^{-\frac{2r+\gamma-1}{2r+\gamma}}$	$ D ^{-\frac{2r}{2r+\gamma}}$
KRR-RF-Uniform (Li et al., 2023)	$r \in (0, 1], 2r + \gamma \geq 1$	$\gamma \in [0, 1]$	$ D ^{-\frac{1}{2r+\gamma}}$	$ D ^{-\frac{2r}{2r+\gamma}}$
KRR-RF-Leverage (Li et al., 2023)	$r \in (0, 1]$	$\gamma \in [0, 1]$	$ D ^{-\frac{\gamma}{2r+\gamma}}$	$ D ^{-\frac{2r}{2r+\gamma}}$
KQR (Lian, 2022)	$r \in [1/2, 1]$	$\gamma \in [0, 1]$	×	$ D ^{-\frac{2r}{2r+\gamma}}$
Lip-RF-Uniform (Rahimi and Recht, 2008)	$r = 1/2$	$\gamma \in [0, 1]$	$ D $	$ D ^{-1/2}$
Lip-RF-Leverage Bach (2017)	$r = 1/2$	$\gamma \in [0, 1]$	$ D ^{\frac{1}{2}}$	$ D ^{-1/2}$
Lip-RF-Uniform (Li et al., 2021)	$r = 1/2$	$\gamma \in [0, 1]$	$ D $	$ D ^{-1/2}$
Lip-RF-Leverage (Li et al., 2021)	$r = 1/2$	$\gamma \in [0, 1]$	$ D ^{\frac{1}{2}}$	$ D ^{-1/2}$
KSVM-RF (Sun et al., 2018)	$r = 1/2$	$\gamma \in [0, 1]$	$ D ^{\frac{2\gamma}{2r+1}}$	$ D ^{-\frac{1}{2r+1}}$
KQR-RF (Theorem 2)	$r \in (0, 1]$	$\gamma \in [0, 1]$	$ D ^{\frac{\alpha}{2r+\gamma}}, r \in (0, 1/2)$ $ D ^{\frac{(2r-1)(1+\gamma-\alpha)+\alpha}{2r+\gamma}}, r \in [1/2, 1]$	$ D ^{-\frac{2r}{2r+\gamma}}$
KQR-RF-Uniform (Theorem 1)	$r \in (0, 1]$	$\gamma \in [0, 1]$	$ D ^{\frac{1}{2r+\gamma}}, r \in (0, 1/2)$ $ D ^{\frac{(2r-1)\gamma+1}{2r+\gamma}}, r \in [1/2, 1]$	$ D ^{-\frac{2r}{2r+\gamma}}$
KQR-RF-Leverage (Corollary 1)	$r \in (0, 1]$	$\gamma \in [0, 1]$	$ D ^{\frac{1}{2r+\gamma}}, r \in (0, 1/2)$ $ D ^{\frac{2r+\gamma-1}{2r+\gamma}}, r \in [1/2, 1]$	$ D ^{-\frac{2r}{2r+\gamma}}$

Simulation Study I

⌚ Spline kernel

We consider the spline kernel of order q , defined as

$$\Lambda_q(x, x') = \sum_{k=-\infty}^{\infty} e^{2\pi i k x} e^{-2\pi i k x'} |k|^{-q},$$

where $x, x' \in [0, 1]$, and $q \in \mathbb{R}$. According to the property of spline kernel, we have

$$\int_0^1 \Lambda_q(x, z) \Lambda_{q'}(x', z) dz = \Lambda_{q+q'}(x, x'),$$

for any $q, q' \in \mathbb{R}$. Consequently, for $r \in (0, 1]$ and $\gamma \in [0, 1]$, let $K(x, x') = \Lambda_{\frac{1}{\gamma}}(x, x')$, and its corresponding random feature is $\phi(x, w) = \Lambda_{\frac{1}{2\gamma}}(x, w)$ with $w \sim U(0, 1)$.

Simulation Study II

Simulation setting

Data are generated from the following model

$$y = \Lambda_{\frac{r}{\gamma} + \frac{1}{2}}(x, 0) + \varepsilon,$$

where $\varepsilon \sim N(0, 0.01)$ and $x \sim U(0, 1)$.

To graphically show the true and estimated quantile function, we consider three different settings:

- ① worst case ($r = 0, \gamma = 1$);
- ② general case ($r = 1/2, \gamma = 1$);
- ③ most benign case ($r = 1, \gamma = 0$).

Results I

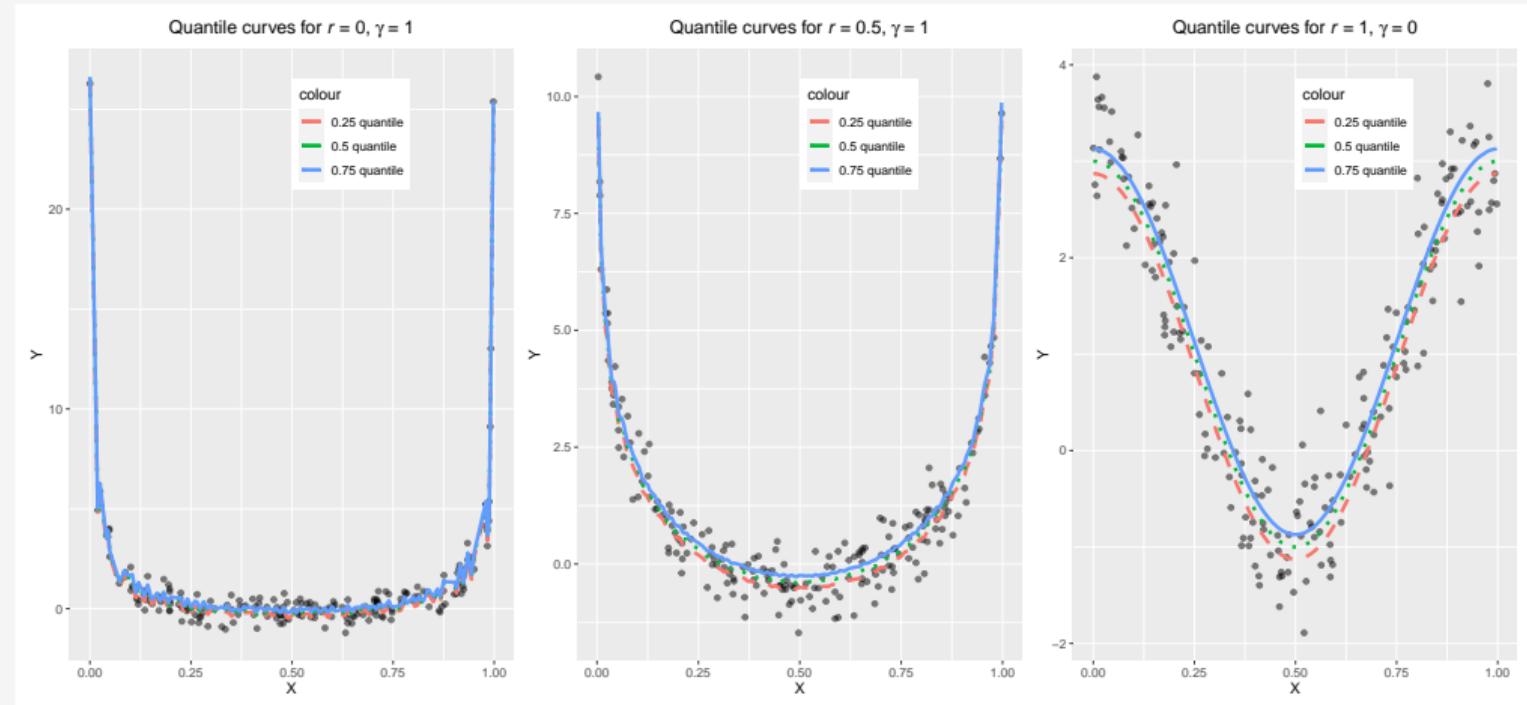


Figure 9: True quantile curves for $r = 0, \gamma = 1$ (left), $r = 1/2, \gamma = 1$ (middle), and $r = 1, \gamma = 0$ (right).

Results II

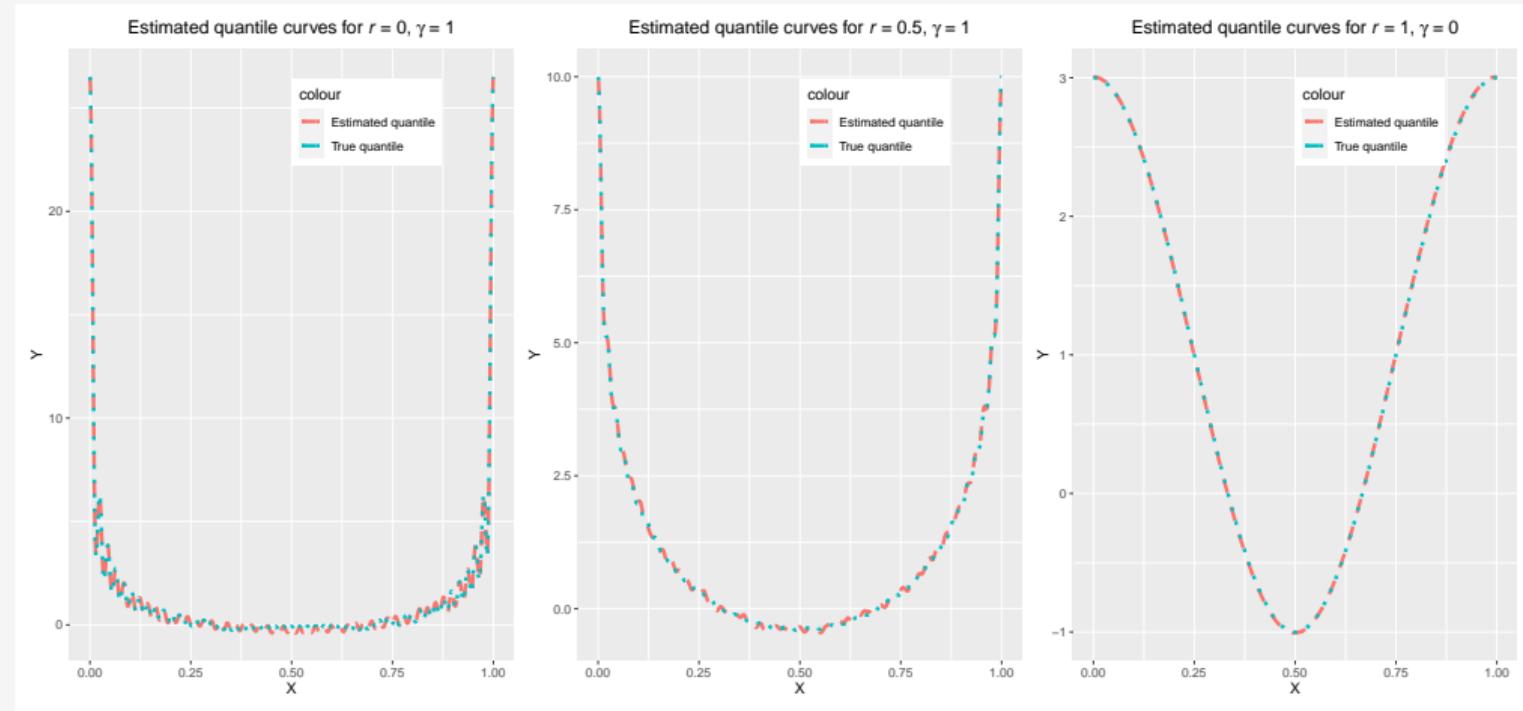


Figure 10: Estimated and true quantile curves for $r = 0, \gamma = 1$ (left), $r = 1/2, \gamma = 1$ (middle), and $r = 1, \gamma = 0$ (right) when $\tau = 0.15$

Learning Rates Validation

- To validate the derived learning rates, i.e., $\mathcal{E}(f_{M,D,\lambda}) - \mathcal{E}(f_\tau^*) = \mathcal{O}(|D|^{-\frac{2r}{2r+\gamma}})$, we estimate the log-transformed excess risk on the testing data and compared it with the theoretical one. We consider two agnostic cases ($r = 0.2, \gamma = 0.1$ and $r = 0.4, \gamma = 0.2$) and two realizable cases ($r = 0.5, \gamma = 0.1$ and $r = 0.8, \gamma = 0.2$) for better illustration.

Results III

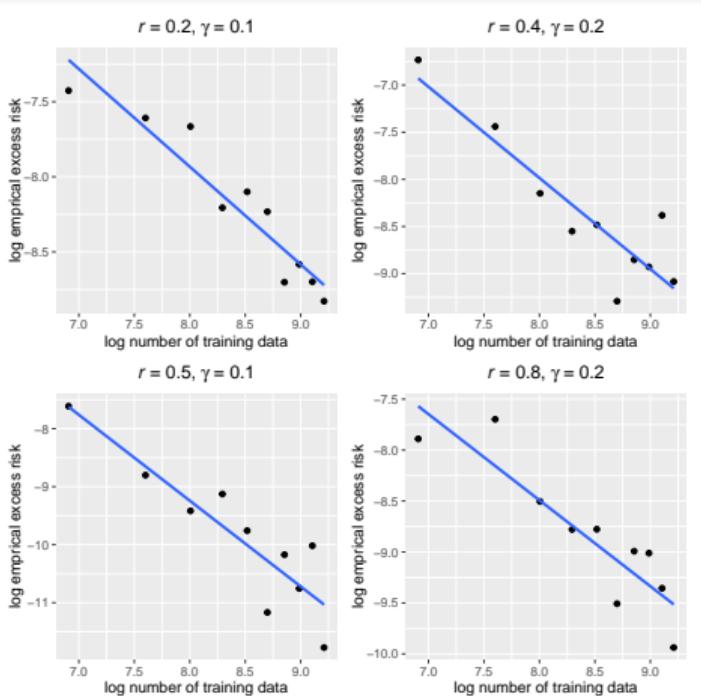


Figure 11: Log empirical excess risk for $r = 0.2, \gamma = 0.1$ (left top), $r = 0.4, \gamma = 0.2$ (right top), $r = 0.5, \gamma = 0.1$ (left bottom) and $r = 0.8, \gamma = 0.2$ (right bottom) when $\tau = 0.5$.

Discussion

- First two figures shows that KQR-RF can estimate the quantile functions very well both in realizable and agnostic settings.
- Last figure that the data points are uniformly distributed on both sides of a straight line, which verifies the derived learning rate. To further investigate the constants in the big- \mathcal{O} bounds, we calculate the slope of each learning curve and compare it to $-\frac{2r}{2r+\gamma}$. The slope constants are 0.81, 1.21, 1.63, 0.95 in four scenarios. This also highlights our contribution in deriving the sharper and capacity-dependent learning rates.

Acknowledgement

謝 謝!
Thank You!

References

Avron, H., Clarkson, K. L., and Woodruff, D. P. (2017). Faster kernel ridge regression using sketching and preconditioning. *SIAM Journal on Matrix Analysis and Applications*, 38(4):1116–1138.

Bach, F. (2017). On the equivalence between kernel quadrature rules and random feature expansions. *The Journal of Machine Learning Research*, 18(1):714–751.

Belloni, A. and Chernozhukov, V. (2011). ℓ_1 -penalized quantile regression in high-dimensional sparse models. *The Annals of Statistics*, 39(1):82.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends® in Machine learning*, 3(1):1–122.

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7:331–368.

Feng, X., He, X., Wang, C., Wang, C., and Zhang, J. (2023). Towards a unified analysis of kernel-based methods under covariate shift. *Advances in Neural Information Processing Systems*, 36:73839–73851.

He, X. and Shi, P. (1994). Convergence rate of b-spline estimators of nonparametric conditional quantile functions. *Journal of Nonparametric Statistics*, 3(3-4):299–308.

Li, J., Liu, Y., and Wang, W. (2023). Optimal convergence for agnostic kernel learning with random features. *IEEE Transactions on Neural Networks and Learning Systems*, 28:1–11.

Li, Y., Liu, Y., and Zhu, J. (2007). Quantile regression in reproducing kernel Hilbert spaces. *Journal of the American Statistical Association*, 102(477):255–268.

Li, Z., Ton, J.-F., Ogle, D., and Sejdinovic, D. (2021). Towards a unified analysis of random fourier features. *The Journal of Machine Learning Research*, 22(1):4887–4937.

Lian, H. (2022). Distributed learning of conditional quantiles in the reproducing kernel hilbert space. *Advances in Neural Information Processing Systems*, 35:11686–11696.

Madrid Padilla, O. H. and Chatterjee, S. (2022). Risk bounds for quantile trend filtering. *Biometrika*, 109(3):751–768.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. *Advances in Neural Information Processing Systems*, 20:1177–1184.

Rahimi, A. and Recht, B. (2008). Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. *Advances in Neural Information Processing Systems*, 21:1313–1320.

Rudi, A. and Rosasco, L. (2017). Generalization properties of learning with random features. *Advances in Neural Information Processing Systems*, 30:3215–3225.

Shen, G., Jiao, Y., Lin, Y., Horowitz, J. L., and Huang, J. (2021). Deep quantile regression: Mitigating the curse of dimensionality. *Journal of Financial Economics*, 131:2127–2149.

 Caixing Wang, Xingdong Feng (SUFSE) Kernel QR with random features