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Hierarchical Novelty Detection

A Existing Novelty Detection methods only provide a binary detection result, indicating

whether the sample is novel or not.

A With the help of a hierarchy of known classes, Hierarchical Novelty Detection (HND) can

identify the class the novel sample is most similar to.
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Issues with Existing Methods

Q  Existing method utilizes samples from known class as novel class in model training. Example:
Model uses sample from Stop sign as Novel Regulatory Sign and Novel Traffic Sign.
A Existing method assigns higher logit values to both known and novel classes. As a result, they

can not differentiate between novel and known class in testing.
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Proposed Method

A We propose a novel method, referred to as evidential hierarchical novelty detection (E-HND) that

leverages fine-grained evidence to more precisely differentiate samples of known class from those of

novel ones in the same hierarchy.
A We design a unique loss function that can create an evidence margin to ensure good separation of
known and novel samples with sound theoretical guarantees.

Logit

Stop

Higher
Value

 Novel Regulatory Sign

i \ Novel
—3 Yield

Existing method

Hiking Trail

Picnic Area

0.12
Dirichlet Parameter . known
Kno“{_n f;ound A 0.10 Novel
ru
\— By 5.0.08 HH
Novel Margin @ NI
0.06
Ground - ﬁ2:| & |
Tl | 0.04 | :
-t I| | l||||
- 0.00 I | 1 | 4 :||l||lv
Non Ground 0 10 20 3
Truths Evidence
Proposed method Proposed method

evidence distribution

Hierarchical Novelty Detection via Fine-Grained Evidence Allocation

A

===

1

) &

) ]
)

Rochester Institute

of Technology

0



Learning Evidence Margin

The proposed loss function comprises two terms that work in a multitask fashion to
allocate: (i) high evidence to the ground truth known leaf class and (ii) moderate
evidence to the ground truth novel non-leaf classes.

LV (0) = KL [D(p;loes; Ore3)|ID(0;166; 01 (30))]

LRO) = > £20)  L£2)0) = KL[D(®jloxs; O (o)) D(Ril s 6z r0r0))]

ceAn(y)

) B >1, ifk=j*
o = .
1 otherwise

i} 1< B2 < B, ifk=jM\e
O = X
1 otherwise
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Theoretical Support

Theorem 3.1 (Evidence margin learning). Given a hierar-
chy ‘H and a training sample i. The known ground truth
class is y with index j and the novel ground truth index
is j1\¢ Yc € An(y). The loss function trains the model to
assign evidence such that

1<amn <P, 1< apne<B2,Vee An(y) (10)

And when the learning converges, the Dirichlet parameters
form an evidence margin given by (f1 — [32).

Theorem 3.2 (Non-conflicting update). When optimizing
the overall loss function in (8) that involves simultaneously
minimizing the two loss terms Egl) (0) and £§2> (0), it does
not lead to a conflict in the model predicted Dirichlet pa-
rameters Q.
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Incorporating the Prior Belief
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The evidential theory allows us to encode a prior belief in the form of base rate distributions.

Base rate for each class denotes the prior probability of a data sample belonging to that class
when no evidence is observed.
Higher base rate for the known classes denote the belief of completeness of the hierarchy,
and a test sample will more likely be assigned to one of the known leaf classes.
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Experimental Results [1/3]

Q  Experiments of 4 hierarchical datasets: CUB, Tiny Imagenet, AWA?2, Traffic
Q  To capture trade-off between known (K-ACC) and novel accuracies (N-ACC), add a bias term to
the logit of novel classes, and obtain sets of K-ACC and N-ACC.
A Area Under the Curve (AUC): obtained by plotting K-ACC and N-ACC.
d NA@50: N-ACC, where the model has exactly 50% K-ACC.
Method CUB Tiny Imagenet AWA2 Traffic
NA@50 AUC | NA@50 AUC | NA@50 AUC | NA@50 AUC
DARTS 40.42 30.07 15.91 12.18 36.75 35.14 34.00 30.36
Relabel 38.23 28.75 18.67 14.73 45.71 40.28 39.67 34.03
Evidential 35.06 25.86 19.35 14.53 44.82 36.44 37.32 32.57
HCL 32.19 25.22 13.45 10.19 36.40 32.80 34.17 33.70
LOO 42.25 32.81 18.93 14.50 47.82 41.95 41.51 35.47
E-HND 46.18 35.31 21.44 16.03 48.22 4237 | 45.09 41.02
TD+LOO 44.42 34.31 19.37 14.87 50.25 42.86 42.41 38.22
TD+E-HND 46.85 35.78 21.77 16.39 52.53 4556 | 4769 43.11

I ‘ ' | Rochester Institute

Hierarchical Novelty Detection via Fine-Grained Evidence Allocation of Technology



Experimental Results [2/3]
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Experimental Results [3/3]
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