

PATH-GUIDED PARTICLE-BASED SAMPLING

Mingzhou Fan, Ruida Zhou, Chao Tian, Xiaoning Qian

Presenter: Mingzhou Fan

July, 2024

Background

- **Goal:** Sample a target distribution with **unnormalized** distribution \hat{p} ;
- **Particle-based sampling:** Construct a vector field $\phi_t : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that the process

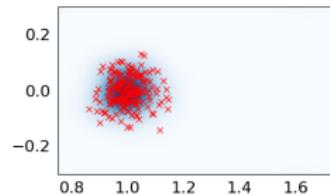
$$\frac{dx_t}{dt} = \phi_t(x_t), \quad x_0 \sim p_0$$

would drive the distribution of particles to a target distribution;

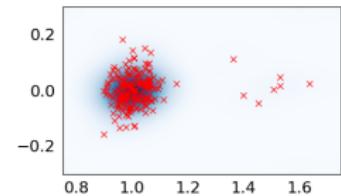
- **Langevin Dynamics (LD):**

$$dx_t = \nabla \ln \hat{p}(x_t) dt + \sqrt{2} d\mathbf{B}_t,$$

Discretized to:


$$x_{t+\Delta t} = x_t + \Delta t \nabla \ln \hat{p}(x_t) + \sqrt{2\Delta t} \epsilon;$$

Motivation


Existing particle-based methods suffer from slow mixing for some target distributions, taking LD as an example:

(a) Target

(b) LD 100 iters

(c) LD 4,000 iters

Annealing-based methods can utilize relatively smooth transitions between **intermediate distributions** to achieve better performance.

Is it possible to combine annealing-based methods with particle-based sampling?

Methodology

PGPS: Path-Guided Particle-based Sampling

- Given a partition-free density process $\{\hat{p}_t\}_{t \in [0,1]}$ and its normalized densities $\{p_t\}_{t \in [0,1]}$, with $\hat{p}_0 = p_0$ being the initial distribution and p_1 being the target with existed derivatives.
- We wish to construct a vector field $\phi_t^\theta : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that the process

$$\frac{dx_t}{dt} = \phi_t^\theta(x_t), \quad x_0 \sim p_0$$

would evolve the distribution of particles through the path;

- The time evolution of the density should satisfy the continuity equation:

$$\frac{\partial}{\partial t} p_t(x) = -\nabla \cdot (p_t(x) \phi_t^\theta(x))$$

- Goal:** Find ϕ_t^θ to guide the samples to follow a normalized density path $\{p_t\}_{t \in [0,1]}$.

Methodology

Using \hat{p}_t to guide x_t

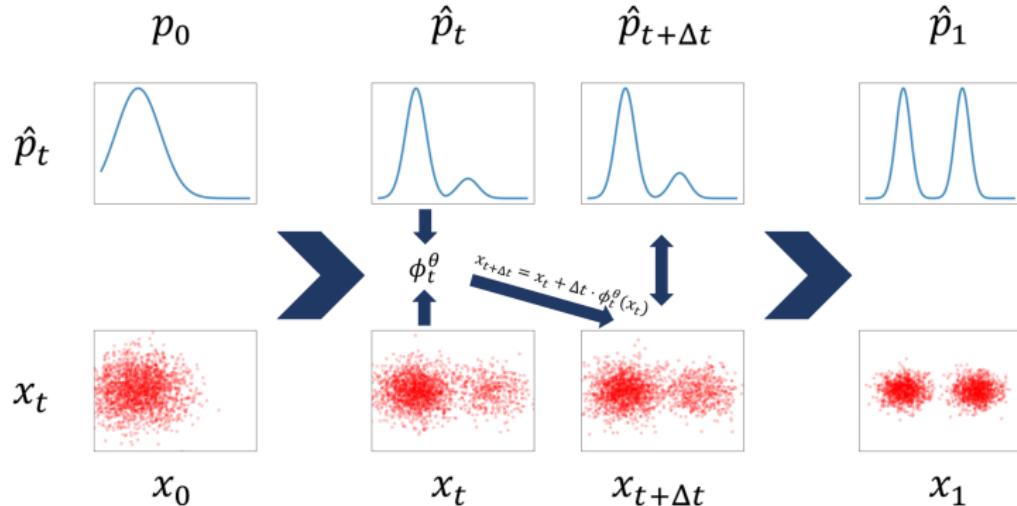


Figure: Schematic of PGPS

Algorithm

Minimizing the infinite sample loss to find a solution to the continuity function:

$$L_t^{inf}(\theta) = \mathbb{E}_{x \sim p_t} \left| \frac{\partial \ln \hat{p}_t(x)}{\partial t} + (\nabla \ln \hat{p}_t(x) + \nabla) \cdot \phi_t^\theta(x) - \mathbb{E}_{x \sim p_t} \frac{\partial \ln \hat{p}_t(x)}{\partial t} \right|^2;$$

Algorithm can be summarized into:

- ① Sample initial distribution and get $\{x^i\}$;
- ② Learn ϕ_t^θ , by minimizing

$$L_t(\theta) = \frac{1}{N} \sum_i \left| \frac{\partial \ln \hat{p}_t(x^i)}{\partial t} + (\nabla \ln \hat{p}_t(x^i) + \nabla) \cdot \phi_t^\theta(x^i) - \frac{1}{N} \sum_i \frac{\partial \ln \hat{p}_t(x^i)}{\partial t} \right|^2;$$

- ③ Update particles $x_t \leftarrow x_t + \phi_t^\theta(x_t) \Delta t$;
- ④ Update time $t \leftarrow t + \Delta t$;
- ⑤ if $t \leq 1$, go to step 2;

Theoretical Analysis

Approximation error $\delta := \min_{\phi_t \in \Phi_t} \sqrt{\int_0^1 \mathbb{E}_{x \sim p_t} [\|\phi_t^\theta(x) - \phi_t(x)\|^2] dt}$

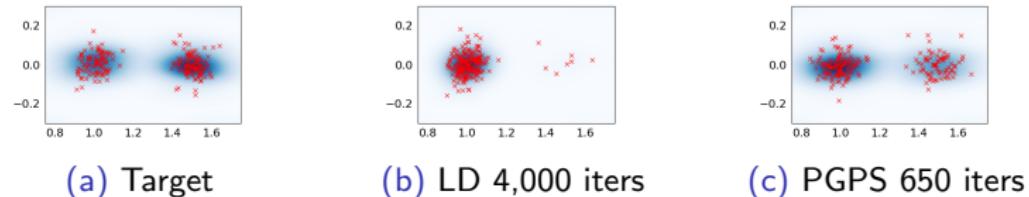
Wasserstein error

The Wasserstein distance of the resulting distribution by the algorithm and the target distribution can be bounded by

$$W_2(p_{\hat{x}_1^\theta}, p_{x_1}) \leq \delta \sqrt{\exp(1 + 2K_1)} + \sqrt{\Delta t} \sqrt{\frac{C(\exp(1 + K_1^2) - 1)}{1 + K_1^2}},$$

where C and K_1 are Lipschitz constants for the vector fields.

Loss \leftrightarrow Approximation error


For any ϕ_t^θ , the approximation error

$$\delta \leq K \cdot L_t^{\inf}(\theta),$$

where $K > 0$ is a universal constant factor.

Empirical Results

PGPS on the motivate example:

Inference performance on benchmark datasets with benchmark methods

	Accuracy (ACC) \uparrow			
	PGPS	SVGD	SGLD	PFG
SONAR	0.7981 \pm 0.023	0.7962 \pm 0.016	0.7942 \pm 0.024	0.7673 \pm 0.033
WINWHITE	0.4520 \pm 0.010	0.4520 \pm 0.010	0.4831 \pm 0.049	0.4520 \pm 0.010
WINERED	0.5938 \pm 0.018	0.5770 \pm 0.018	0.5107 \pm 0.096	0.5723 \pm 0.019
AUSTRALIAN	0.8620 \pm 0.009	0.8626 \pm 0.006	0.7362 \pm 0.157	0.8643 \pm 0.006
HEART	0.2556 \pm 0.142	0.1801 \pm 0.042	0.2384 \pm 0.135	0.1762 \pm 0.033
GLASS	0.5850 \pm 0.080	0.5383 \pm 0.076	0.4561 \pm 0.152	0.4505 \pm 0.071
COVERTYPE	0.5899 \pm 0.095	0.4867 \pm 0.006	0.5221 \pm 0.084	0.5088 \pm 0.053

	Expected Calibration Error (ECE) \downarrow			
	PGPS	SVGD	SGLD	PFG
SONAR	0.2517 \pm 0.057	0.1712 \pm 0.020	0.3394 \pm 0.049	0.1678 \pm 0.050
WINWHITE	0.0750 \pm 0.011	0.0988 \pm 0.012	0.0935 \pm 0.024	0.0876 \pm 0.018
WINERED	0.0366 \pm 0.005	0.0402 \pm 0.004	0.0868 \pm 0.029	0.0449 \pm 0.005
AUSTRALIAN	0.1703 \pm 0.066	0.1713 \pm 0.064	0.3517 \pm 0.078	0.1457 \pm 0.047
HEART	0.4579 \pm 0.071	0.5117 \pm 0.064	0.5110 \pm 0.114	0.4887 \pm 0.089
GLASS	0.1142 \pm 0.008	0.1155 \pm 0.006	0.2157 \pm 0.025	0.1289 \pm 0.021
COVERTYPE	0.0743 \pm 0.016	0.0950 \pm 0.012	0.1301 \pm 0.038	0.0926 \pm 0.078

Thanks!