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INTRODUCTION

Problem Setup. We are interested in solving the following optimization
problem

θ̂n ∈ argmin
θ∈Rd

fn(θ), (1)

where fn denote as the sample loss function. Moreover, we define the
population version of the optimization problem (1):

θ⋆ ∈ argmin
θ∈Rd

f (θ) := E[fn(θ)], (2)

where f denote as the population loss function.
Motivation. The statistical and computational complexity of fixed-step
size gradient descent are determined by the singularity of ∇2f (θ⋆):

Iterations forconvergence
Statistical

rate
Computational

complexity
Non-singular O (log(n)) O

(
n−1/2

)
O(n)

Singular O
(
n

α
2(α−γ)

)
O
(
n

−1
2(α−γ)

)
O
(
n
1+ α

2(α−γ)

)
Table 1: Suboptimality of gradient descent iterates for singular models.

To overcome the suboptimal computational complexity of the GD algo-
rithm, we consider the utilization of the local curvature information. In
this work, we specifically address the following question:

Is there a method that achieves a balance between computational effi-
ciency and provable statistical optimality at a reasonable per-iteration
computational cost?

We explore this inquiry and demonstrate that the normalized gradient
descent (NormGD) algorithm can attain both statistical optimality and
computational efficiency.
Contributions.
1. General Theory. We study the computational and statistical complex-

ity of NormGD iterates when the population loss function is homoge-
neous in all directions, and the stability of first-order and second-order
information holds.

2. Examples. We illustrate the general theory for the statistical guarantee
of NormGD under two popular statistical models: (1) Generalized
Linear Models (GLM) and (2) Gaussian Mixture Models (GMM).

MAIN RESULTS

Normalized Gradient Descent (NormGD). The iterative steps of Nor-
malized Gradient Descent (NormGD) for the sample and population loss
functions are given by θt+1n := F NGD

n (θtn) and θt+1 := F NGD(θt), respec-
tively. The definitions of the NormGD operators for the sample and
population cases are as follows:

F NGD
n (θtn) := θtn −

η

λmax(∇2fn(θtn))
∇f (θtn) (Sample iterate)

F NGD(θt) := θt − η

λmax(∇2f (θt))
∇f (θt) (Population iterate)

Assumption 1. (Homogeneous Property)
Given the constant α > 0 and the radius r > 0, for all θ ∈ B(θ⋆, r) we
have

λmin(∇2f (θ)) ≥ c1∥θ − θ⋆∥α,
λmax(∇2f (θ)) ≤ c2∥θ − θ⋆∥α,

where c1 > 0 and c2 > 0 are some universal constants depending on r.

Assumption 2. (Stability of Second-order Information)
For a given parameter γ ≥ 0, there exist a noise function ε :

N× (0, 1] → R+, universal constant c3 > 0, and some positive param-
eter ρ > 0 such that

sup
θ∈B(θ⋆,r)

∥∇2fn(θ)−∇2f (θ)∥op ≤ c3r
γε(n, δ),

for all r ∈ (0, ρ) with probability 1− δ.

Theorem (Informal)
Assume that assumptions (1) and (2) hold with α ≥ γ + 1. Then, there
exist universal constants C1, C2 such that with probability 1− δ, for
t ≥ C1 log(1/ε(n, δ)), the following holds:

min
k∈{0,1,··· ,t}

∥θkn − θ⋆∥ ≤ C2 · ε(n, δ)
1

α−γ.

Generalized Linear Model (GLM). Let {(Yi, Xi)}ni=1 satisfy

Yi = g(X⊤
i θ

⋆) + εi. ∀i ∈ [n] (3)

Here, g : R → R is a given link function, θ⋆ is a true but unknown
parameter, and εi are i.i.d. noises from N (0, σ2).

Least-square loss. We estimate the true parameter θ⋆ via minimizing
the least-square loss function:

Ln(θ) :=
1

2n

n∑
i=1

(Yi − (X⊤
i θ)

p)2, (Sample loss)

L(θ) := 1

2
E[(Y − (X⊤θ)p)2]. (Population loss)

Table 2: Overview of Results for GLM with Link Function g(r) = rp in low SNR regime with θ⋆ = 0.

Algorithm Iterations forconvergence Statistical erroron convergence
Computational

complexity

Gradient Descent (n/d)
p−1
p (d/n)

1
2p n

2p−1
p d

1
p

Newton’s Method log(n/d) (d/n)
1
2p

∗
(nd + d3) log(n/d)

BFGS log(n/d) (d/n)
1

2p+2
∗

(nd + d2) log(n/d)

NormGD (Ours) log(n/d) (d/n)
1
2p (nd + d2) log(n/d)

NUMERICAL EXPERIMENTS


