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INTRODUCTION
Problem Setup. We are interested in solving the following optimization
problem
0, € argmin f,(6), (1)
HeR?

where f,, denote as the sample loss function. Moreover, we define the
population version of the optimization problem (1):

0" € argmin £(0) := E[f,(6)]. @)

OcRd

where f denote as the population loss function.
Motivation. The statistical and computational complexity of fixed-step
size gradient descent are determined by the singularity of V- f(6*):

Iterations for Statistical (omputational
convergence rate complexity

Non-singular| O (log(n)) O(n_l/ 2) O(n)
Singular O(nﬁ> O(n%fg—l’ﬂ) O(nHﬁ)

Table 1: Suboptimality of gradient descent iterates for singular models.

To overcome the suboptimal computational complexity of the GD algo-
rithm, we consider the utilization of the local curvature information. In
this work, we specifically address the following question:

Is there a method that achieves a balance between computational effi-
ciency and provable statistical optimality at a reasonable per-iteration
computational cost?

We explore this inquiry and demonstrate that the normalized gradient
descent (NormGD) algorithm can attain both statistical optimality and
computational efficiency.

Contributions.

1. General Theory. We study the computational and statistical complex-
ity of NormGD iterates when the population loss function 1s homoge-
neous 1n all directions, and the stability of first-order and second-order
information holds.

2. Examples. We 1llustrate the general theory for the statistical guarantee

of NormGD under two popular statistical models: (1) Generalized
Linear Models (GLM) and (2) Gaussian Mixture Models (GMM).
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MAIN RESULTS

Normalized Gradient Descent (NormGD). The iterative steps of Nor-
malized Gradient Descent (NormGD) for the sample and population loss
functions are given by 0/t := FNCP(9!) and 0" := FNCP(9), respec-
tively. The definitions of the NormGD operators for the sample and
population cases are as follows:

. n .
FNCP(0Y) = 0! N (V2L (0 ))V f(0) (Sample iterate)
NP0 =6 - (VUQ 0 t))V f(6) (Population iterate)

Assumption 1. (Homogeneous Property)

Given the constant > 0 and the radius » > 0, for all # € B(6*,r) we
have

)\min(VQf(QD Z ClHH B (9*H&7
)\max(VQf(e)) S CQHH o 6)*H&7

where c; > 0 and ¢ > 0 are some universal constants depending on 7.

Assumption 2. (Stability of Second-order Information)

For a given parameter v > 0, there exist a noise function ¢
N x (0, 1] — R™, universal constant c3 > 0, and some positive param-
eter p > 0 such that

sup |V fa(8) = V2f(0)[lop < c5r7(n, 0),
0eB(6*r)

for all € (0, p) with probability 1 — J.

Theorem (Informal)

Assume that assumptions (1) and (2) hold with a > ~ + 1. Then, there

exist universal constants C;, C5 such that with probability 1 — o, for
t > Chlog(1/e(n,d)), the following holds:

min 0% — 6*|| < Cy - e(n, §)7.
ke{0,1,- t}

Generalized Linear Model (GLM). Let {(Y;, X;)}/, satisfy
Yi=g(X,'0") +e.  Vien] (3)

Here, g : R — R i1s a given link function, #* is a true but unknown
parameter, and ¢; are i.i.d. noises from N (0, o%).
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Least-square loss. We estimate the true parameter 6* via minimizing
the least-square loss function:

(f

1

L,(0) = o Z(Y; — (X, 0)")* (Sample loss)
i=1
L(0) = %43[()/ — (X0 (Population loss)

Table 2: Overview of Results for GLM with Link Function g(r) = r? in low SNR regime with 8* = 0.

: Iterations for Statistical error COmputational
Algorithm convergence on convergence complexity
p—1 1 2p—1 1
Gradient Descent |  (n/d) » (d/n)2» n r dr
1
Newton’s Method |  log(n/d) (d/n)z (nd + d°) log(n/d)
1
BFGS log(n/d) (d/n)2+2 (nd + d?)log(n/d)
1
NormGD (Ours) log(n/d) (d/n)2 (nd + d?)log(n/d)

NUMERICAL EXPERIMENTS

Figure 1: Left: All methods converge linearly in the high signal-to-noise setting; Right: all second-order methods converge
linearly in the low signal-to-noise setting while GD converges sub-linearly.
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(b) Convergence rate of sample iterates
in Low SNR setting with n = 1000

(a) Convergence rate of sample iterates
in High SNR setting with n = 1000

Figure 2: Left: (High SNR) The statistical error of all methods roughly scales with n~-°; Right: (Low SNR) the statistical
error roughly scales with n~°-2° for all methods.

Statistical Error vs Sample size
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(b) Statistical rate of sample iterates
in Low SNR setting with d = 2

(a) Statistical rate of sample iterates
in High SNR setting with d = 2



