

Improving Group Robustness on Spurious Correlation Requires Preciser Group Inference

Yujin Han, Difan Zou

Empirical Risk Minimization (ERM)

$$J_{\text{ERM}}(\theta) = \frac{1}{n} \sum_{i=1}^n l(\theta; \mathbf{x}_i, y_i)$$

Minimal average error over the training set

Problem: Low Worst-Group Performance

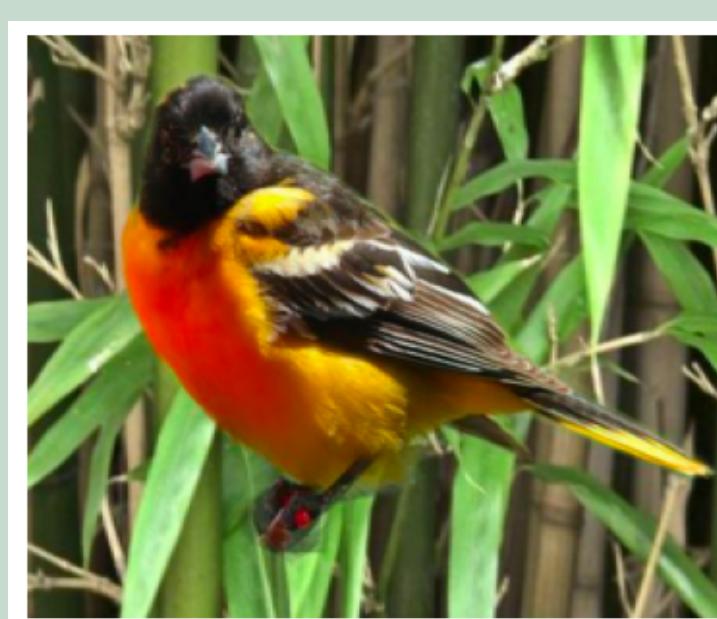
Wildbird image classification (Wah et al., '11; Sagawa et al., '20)

		Background	
		Land	Water
True Label	Landbird		
	Waterbird		

97.3% average test accuracy

Problem: Low Worst-Group Performance

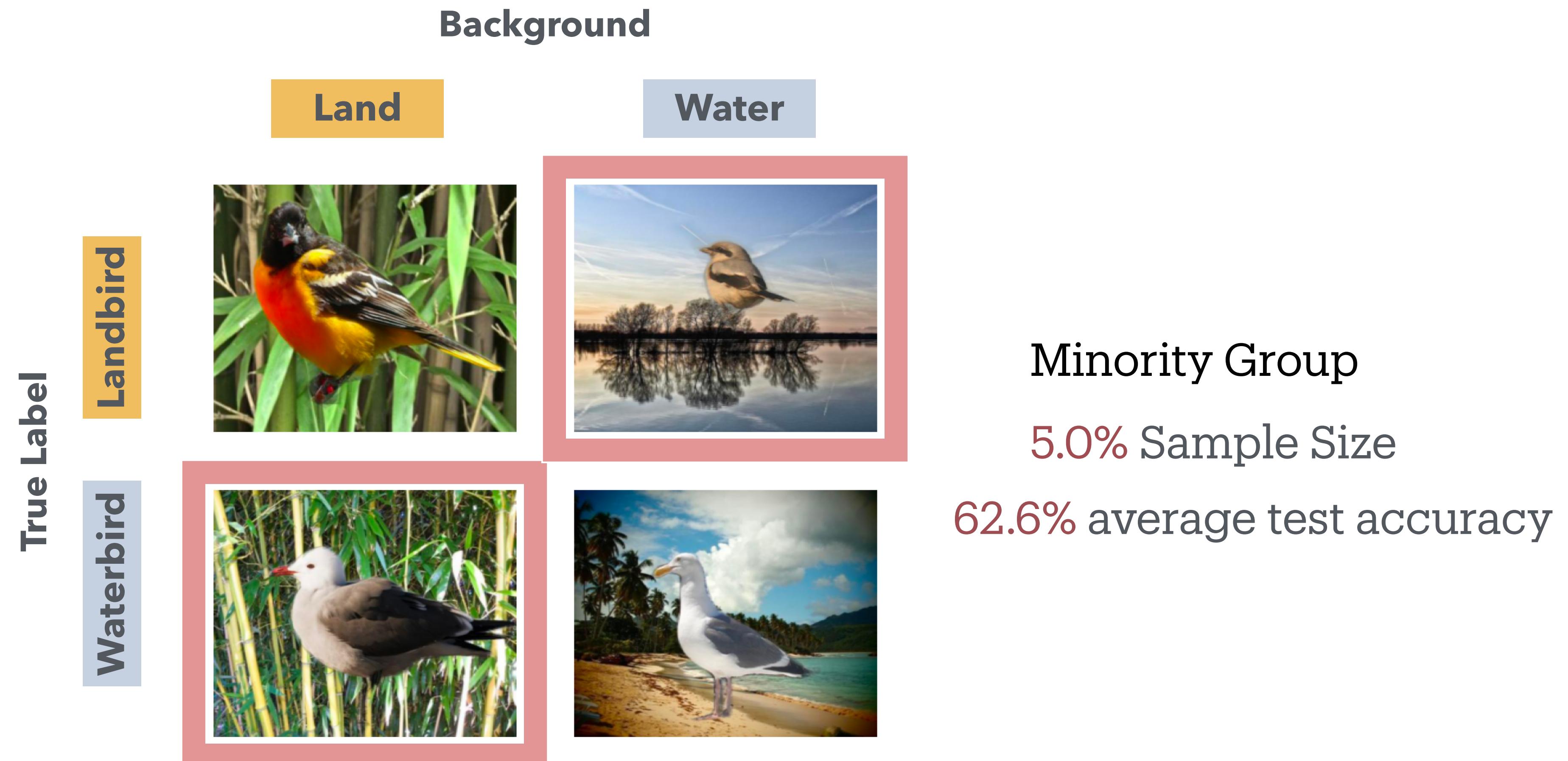
Wildbird image classification (Wah et al., '11; Sagawa et al., '20)

		Background	
		Land	Water
True Label	Landbird		
	Waterbird		

Majority Group
95.0% Sample Size
almost **100%** average test accuracy

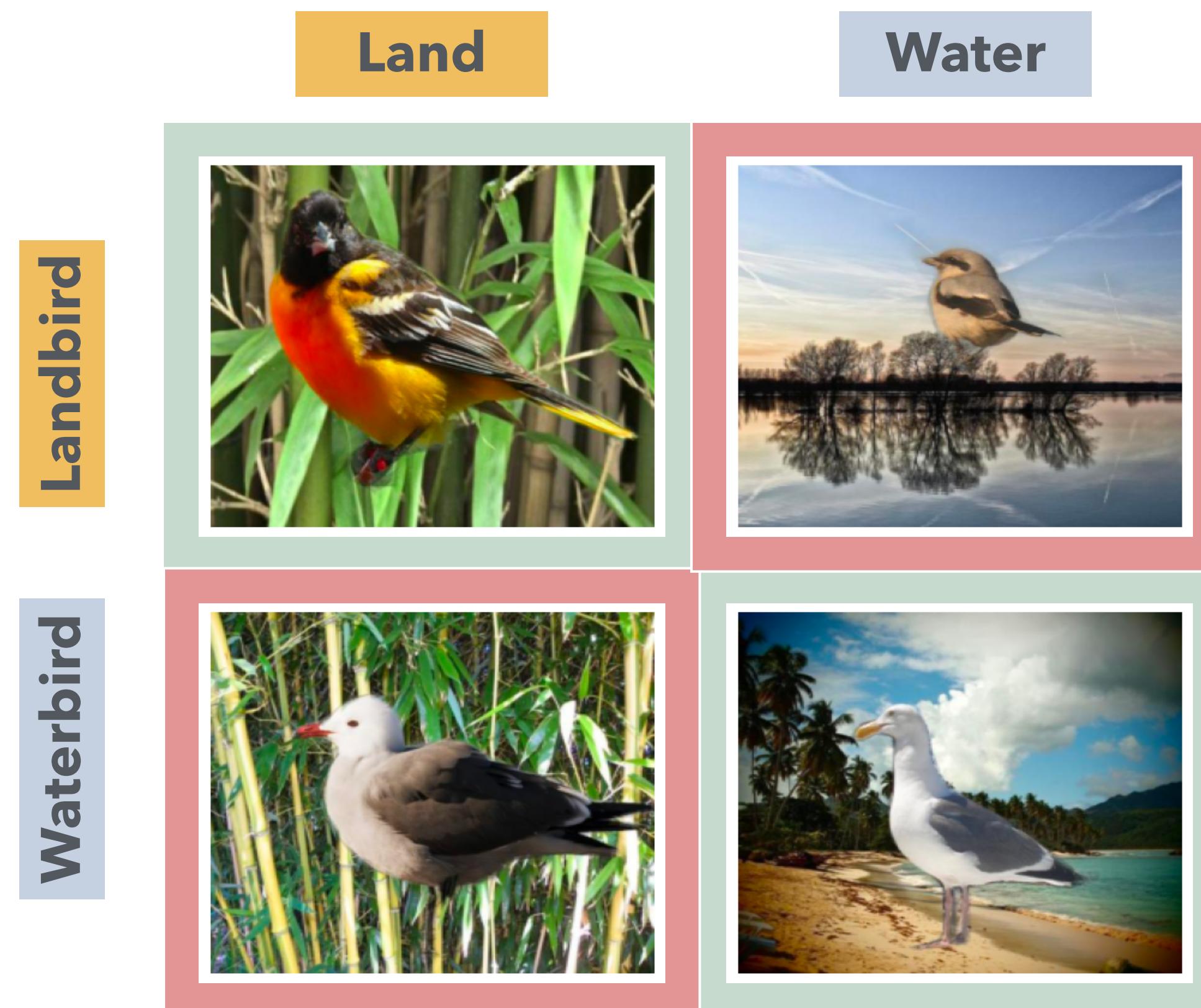
Problem: Low Worst-Group Performance

Wildbird image classification (Wah et al., '11; Sagawa et al., '20)



Problem: Low Worst-Group Performance

Wildbird image classification (Wah et al., '11; Sagawa et al., '20)



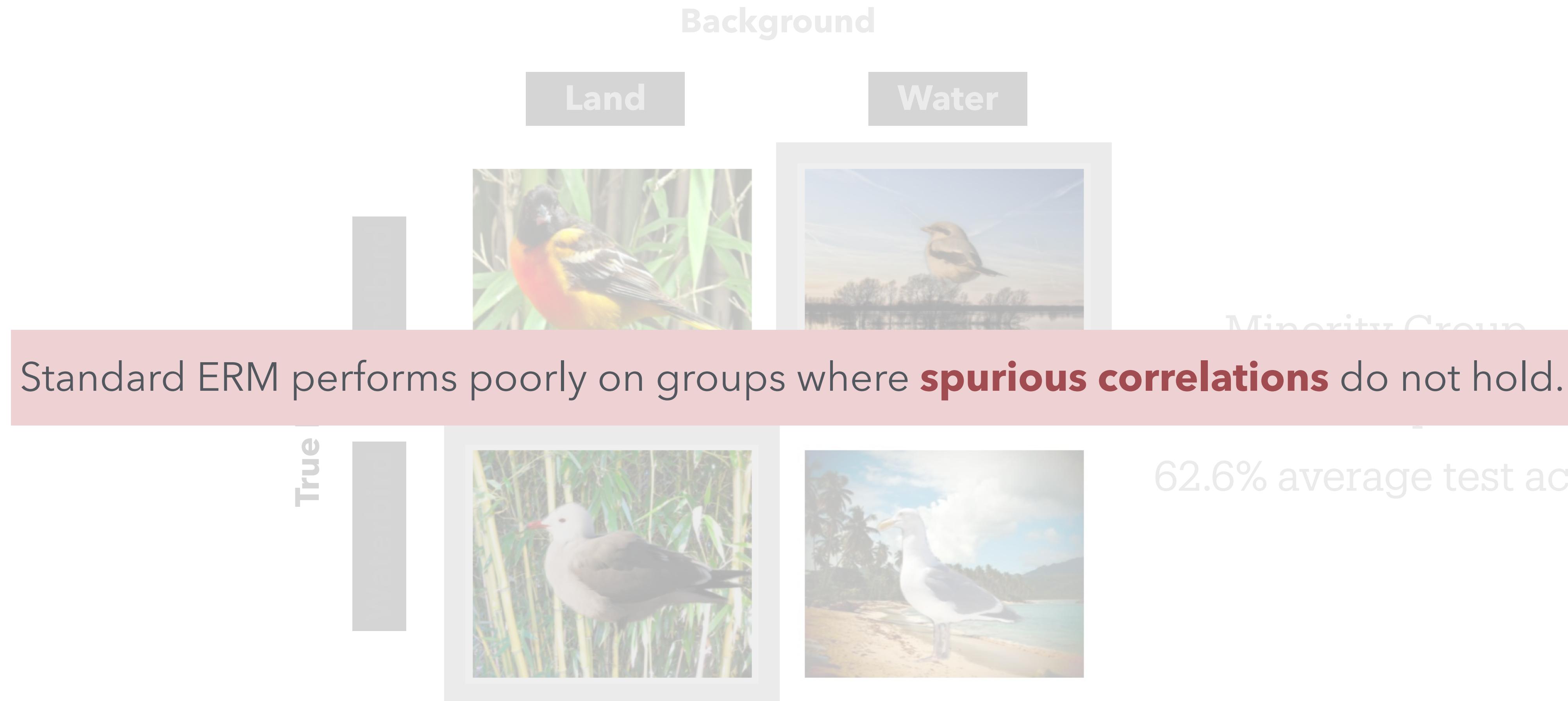
Minority Group

5.0% Sample Size

62.6% average test accuracy

Problem: Low Worst-Group Performance

Wildbird image classification (Wah et al., '11; Sagawa et al., '20)



Problem: Low Worst-Group Performance

Spurious Correlation

		Background	
		Land	Water
Landbird			
Waterbird			

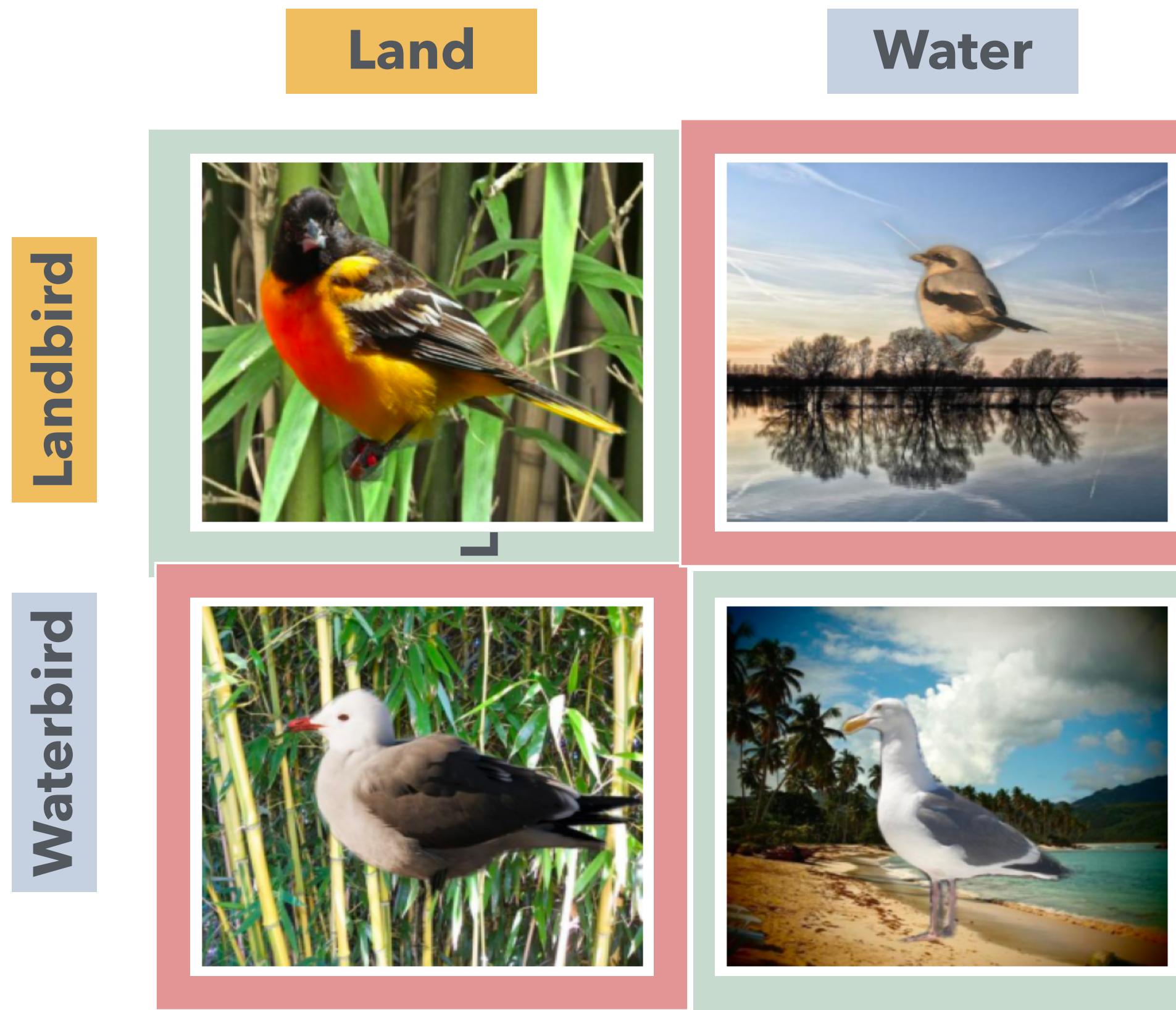
Invariant attribute: **Bird Type** ✓

Spurious attribute: **Background** ✗

Problem: Low Worst-Group Performance

Spurious Correlation

Background



Imbalanced Data
Simplicity Bias

...

Prior Work: Requiring Group Label

Group Reweighting: GroupDRO

ERM

$$\min_{\theta} \mathbb{E}_{(\mathbf{x}, y) \sim p^{tr}}[l(\theta; \mathbf{x}, y)]$$

minimal **average** error over the training set

GroupDRO

$$\min_{\theta} \{ \sup_{g \in \mathcal{G}} \mathbb{E}_{(\mathbf{x}, y) \sim p^g}[l(\theta; \mathbf{x}, y)] \}$$

minimal **worst-case** error over the training set

Prior Work: Requiring Group Label

Group Reweighting: GroupDRO

ERM

$$\min_{\theta} \mathbb{E}_{(\mathbf{x}, y) \sim p^{tr}}[l(\theta; \mathbf{x}, y)]$$

minimal **average** error over the training set

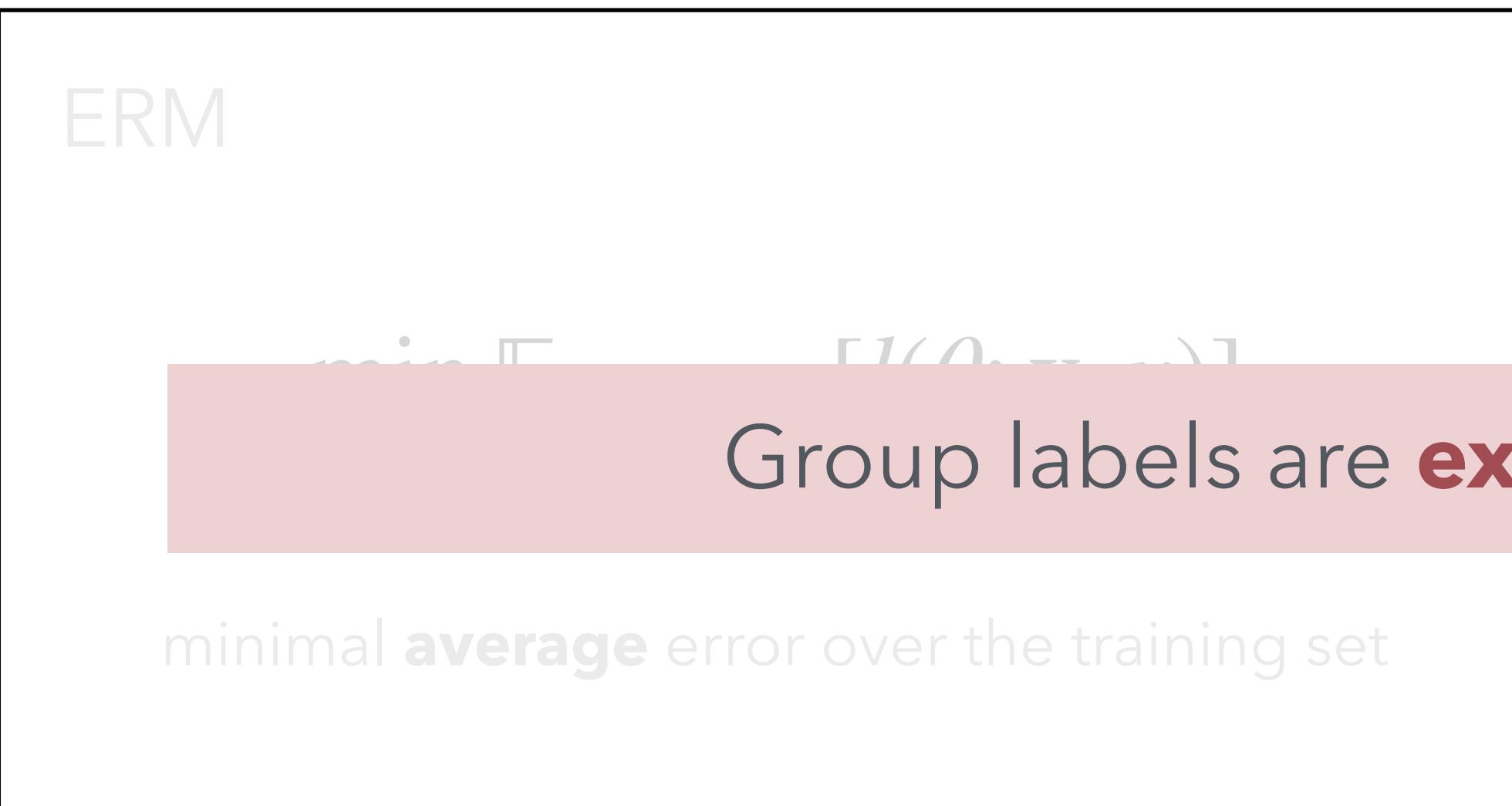
GroupDRO

$$\min_{\theta} \left\{ \sup_{g \in \mathcal{G}} \mathbb{E}_{(\mathbf{x}, y) \sim p^g}[l(\theta; \mathbf{x}, y)] \right\}$$

minimal **worst-case** error over the training set

Prior Work: Requiring Group Label

Group Reweighting: GroupDRO



Group labels are **expensive** and **labor-intensive**

Prior Work: Inferring Group Label

ERM-Based: Just Train Twice (JTT)

Stage 1: Inferring group labels

1. Train identification model f_{id} via ERM

Prior Work: Inferring Group Label

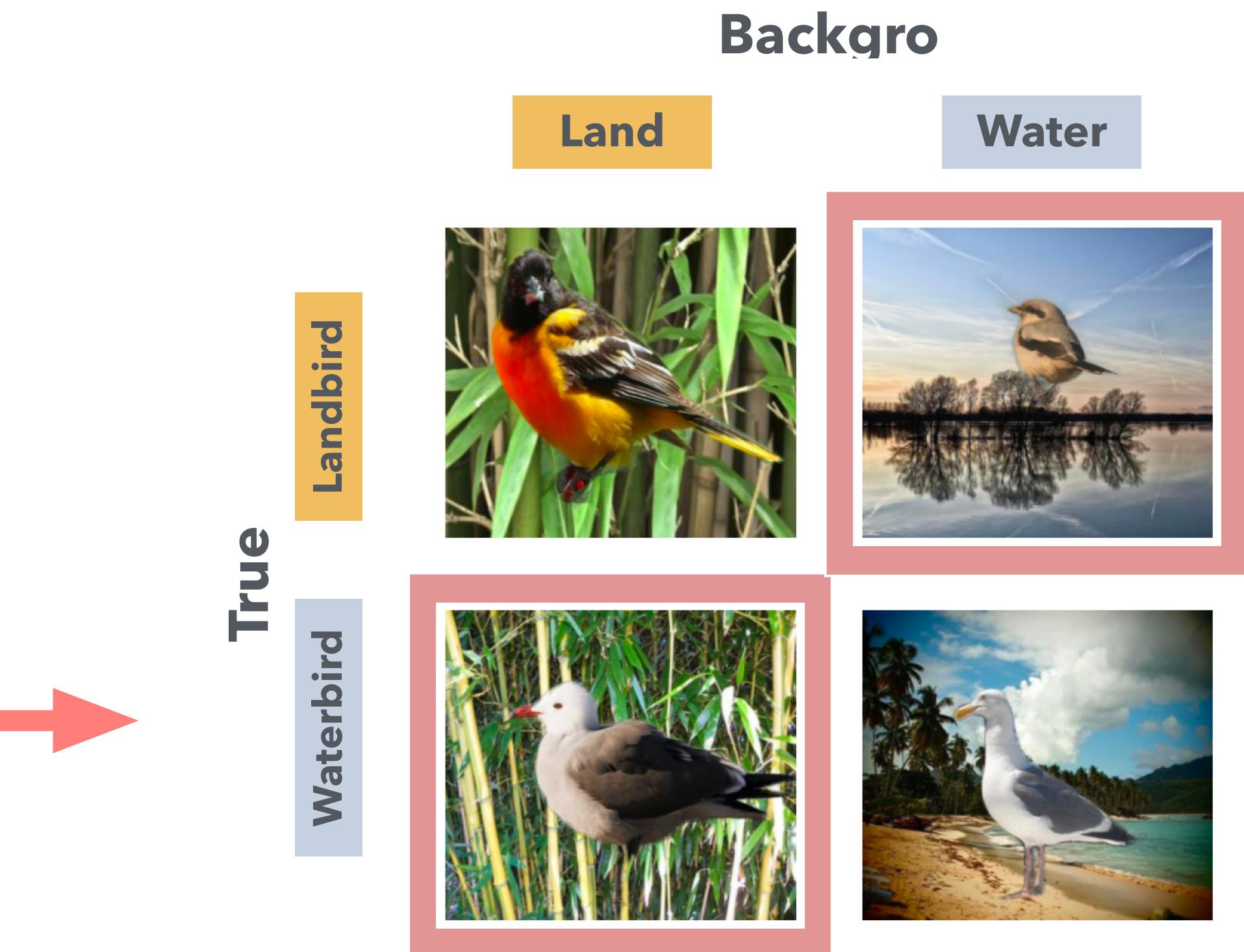
ERM-Based: Just Train Twice (JTT)

Stage 1: Inferring group labels

1. Train identification model f_{id} via ERM
2. Compute **error set E** of misclassified training examples

$$E = \{(\mathbf{x}, y) \mid f_{id}(\mathbf{x}) \neq y\}$$

E is **minority groups** where spurious correlation doesn't hold



Prior Work: Inferring Group Label

ERM-Based: Just Train Twice (JTT)

Stage 1: Inferring group labels

1. Train identification model f_{id} via ERM
2. Compute **error set E** of misclassified training examples

$$E = \{(\mathbf{x}, y) \mid f_{id}(\mathbf{x}) \neq y\}$$

E is **minority groups** where spurious correlation doesn't hold

Stage 2: Invariant learning

3. Upweight identified examples

Prior Work: Inferring Group Label

ERM-Based: Just Train Twice (JTT)

Stage 1: Inferring group labels

1. Train identification model f_{id} via ERM
2. Compute **error set E** of misclassified training examples

$$E = \{(\mathbf{x}, y) \mid f_{id}(\mathbf{x}) \neq y\}$$

E is **minority groups** where spurious correlation doesn't hold

Stage 2: Invariant learning

3. Upweight identified examples
4. Train f_{robust} via ERM on upsampled data

Prior Work: Inferring Group Label

ERM-Based: Just Train Twice (JTT)

Stage 1: Inferring group labels

1. Train identification model f_{id} via ERM
2. Output group labels \hat{y}

Stage 2: Invariant learning

3. Upweight identified examples

Have **performance gaps** compared to group annotation utilized methods

$$E = \{x, y\} | f_{id}(x) \neq y\}$$

E is **minority groups** where spurious correlation doesn't hold

Prior Work: Inferring Group Label

EI-Based: Environment Inference for Invariant Learning (EIIL)

Stage 1: Inferring group labels

1. Infer pseudo group label via violating invariant principles

Regularization term of IRM:

$$\max C^{EI}(\phi, q) = \max \|\nabla R(\phi, q)\|$$

where $R^e(\phi, q) = \frac{1}{N} \sum_i q_i(e) l(\phi(\mathbf{x}_i), y_i)$

Stage 2: Invariant learning

3. Train f_{robust} via GroupDRO

Prior Work: Inferring Group Label

EI-Based: Environment Inference for Invariant Learning (EIIL)

Stage 1: Inferring group labels

1. Infer pseudo group label via violating invariant principles

Reg

Have **performance gaps** compared to group annotation utilized methods

where $R^e(\phi, q) = \frac{1}{N} \sum_i q_i(e) l(\phi(\mathbf{x}_i), y_i)$

Stage 2: Invariant learning

3. Train f_{robust} via GroupDRO

Prior Work: Inferring Group Label

Human Prior

DISC: Discover and Cure

Concept Bank: human-interpretable concepts

Concept category	Concepts
Color	[blackness, blueness, greenness, redness, whiteness]
Texture	[concrete, granite, leather, laminate, metal, blotchy, blurriness, stripes, polka dots, knitted, cracked, frilly, waffled, scaly, lacelike, grooved, stratified, gauzy, marbled, flecked, stained, braided, matted, meshed, cobwebbed, spiralled, dotted, crosshatched, wrinkled, woven, potholed, crystalline, paisley, veined, fibrous, studded, bubbly, pleated, grid, perforated, porous, interlaced, smeared, honeycombed, sprinkled, chequered, lined, banded, bumpy, zigzagged, swirly, pitted, freckled]
Nature	[bamboo, beach, bridge, bush, canopy, earth, field, flower, flowerpot, fluorescent, forest, grass, ground, harbor, hill, lake, mountain, muzzle, palm, path, plant, river, sand, sea, snow, tree, water]
City	[awning, base, bench, building, earth, fence, field, ground, house, manhole, path, snow, streets]
Household	[air-conditioner, apron, armchair, back-pillow, balcony, bannister, bathrooms, bathtub, bed, bedclothes, bedrooms, cabinet, carpet, ceiling, chair, chandelier, chest-of-drawers, countertop, curtain, cushion, desk, dining-rooms, door, door-frame, double-door, drawer, drinking-glass, exhaust-hood, figurine, fireplace, floor, flower, flowerpot, fluorescent, ground, handle, handle-bar, headboard, headlight, house, jar, lamp, light, microwave, mirror, ottoman, oven, pillow, plate, refrigerator, sofa, stairs, toilet]
Others	[bird, cat, cow, dog, horse, mouse, paw, arm, back, body, ear, eye, eyebrow, female-face, leg, male-face, foot, hair, hand, head, inside-arm, knob, mouth, neck, nose, outside-arm, ashcan, airplane, bag, bus, beak, bicycle, blind, board, book, bookcase, bottle, bowl, box, brick, basket, bumper, can, candlestick, cap, car, cardboard, ceramic, chain-wheel, chimney, clock, coach, coffee-table, column, computer, counter, cup, desk, engine, fabric, fan, faucet, flag, floor, food, foot-board, frame, glass, keyboard, lid, loudspeaker, minibike, motorbike, napkin, pack, painted, painting, pane, paper, pedestal, person, pillar, pipe]

ZIN: auxiliary information z for environmental INference

Auxiliary Information

Built year ; Age; Location; Blond Hair, Eyeglasses ...

Prior Work: Inferring Group Label

Human Prior

DISC: Discover and Cure

Concept Bank: human-interpretable concepts

Concept category	Concepts
Color	[blackness, blueness, greenness, redness, whiteness]
Texture	[bamboo, beach, bridge, bush, canopy, earth, field, flower, flowerpot, fluorescent, forest, grass, ground, harbor, hill, lake, mountain, muzzle, palm, path, plant, river, sand, sea, snow, tree, water]
Nature	[awning, base, bench, building, earth, fence, field, ground, house, manhole, path, snow, streets]
City	[air-conditioner, apron, armchair, back-pillow, balcony, bannister, bathrooms, bathtub, bed, bedclothes, bedrooms, cabinet, carpet, ceiling, chair, chandelier, chest-of-drawers, countertop, curtain, cushion, desk, dining-rooms, door, door-frame, double-door, drawer, drinking-glass, exhaust-hood, figurine, fireplace, floor, flower, flowerpot, fluorescent, ground, handle, handle-bar, headboard, headlight, house, jar, lamp, light, microwave, mirror, ottoman, oven, pillow, plate, refrigerator, sofa, stairs, toilet]
Household	[bird, cat, cow, dog, horse, mouse, paw, arm, back, body, ear, eye, eyebrow, female-face, leg, male-face, foot, hair, hand, head, inside-arm, knob, mouth, neck, nose, outside-arm, ashcan, airplane, bag, bus, beak, bicycle, blind, board, book, bookcase, bottle, bowl, box, brick, basket, bucket, bumper, can, candlestick, cap, car, cardboard, ceramic, chain-wheel, chimney, clock, coach, coffee-table, column, computer, counter, cup, desk, engine, fabric, fan, faucet, flag, floor, food, foot-board, frame, glass, keyboard, lid, loudspeaker, minibike, motorbike, napkin, pack, painted, painting, pane, paper, pedestal, person, pillar, pipe]
Others	

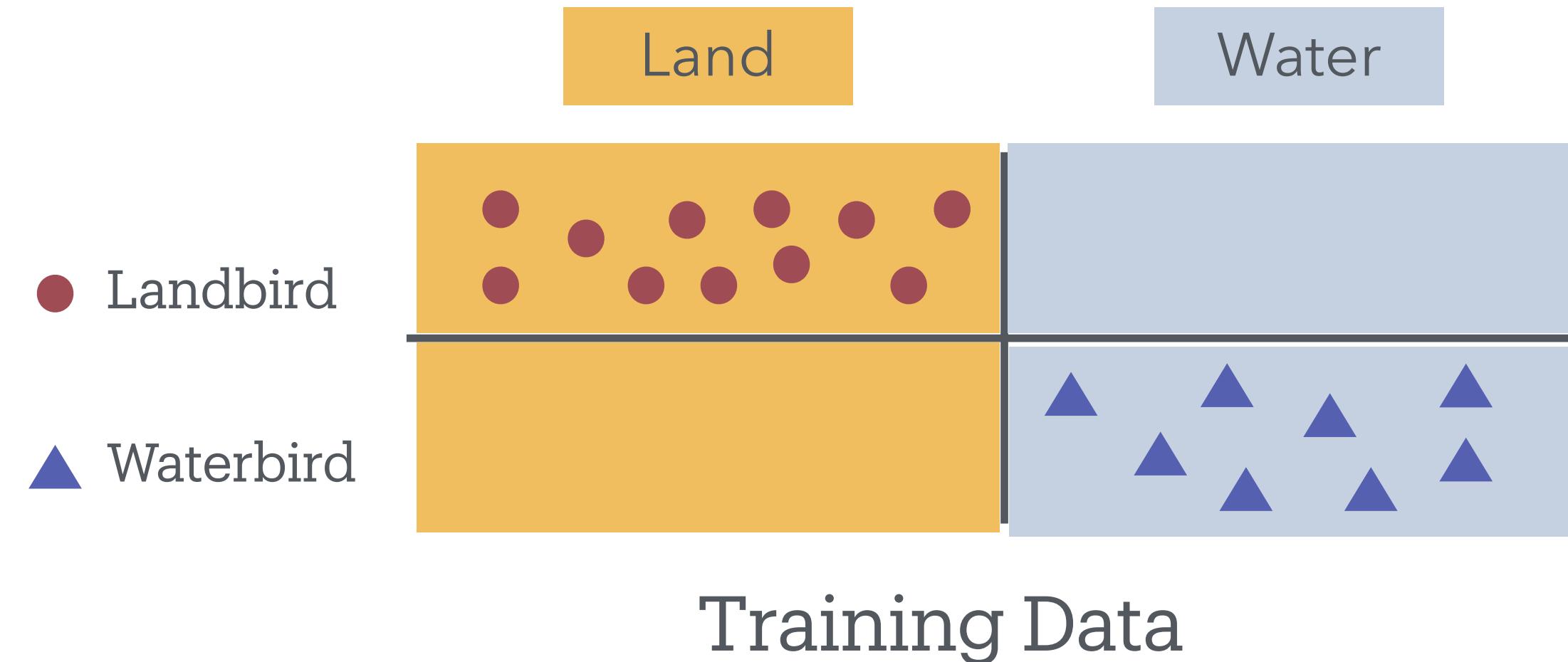
Not be applicable when prior information is **unavailable**

ZIN: auxiliary information z for environmental INference
Auxiliary Information

Eyeglasses ...

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison



Group Distribution: $g = \{(\bullet, \blacksquare), (\bullet, \square), (\blacktriangle, \blacksquare), (\blacktriangle, \square)\} = (10, 0, 0, 8)$

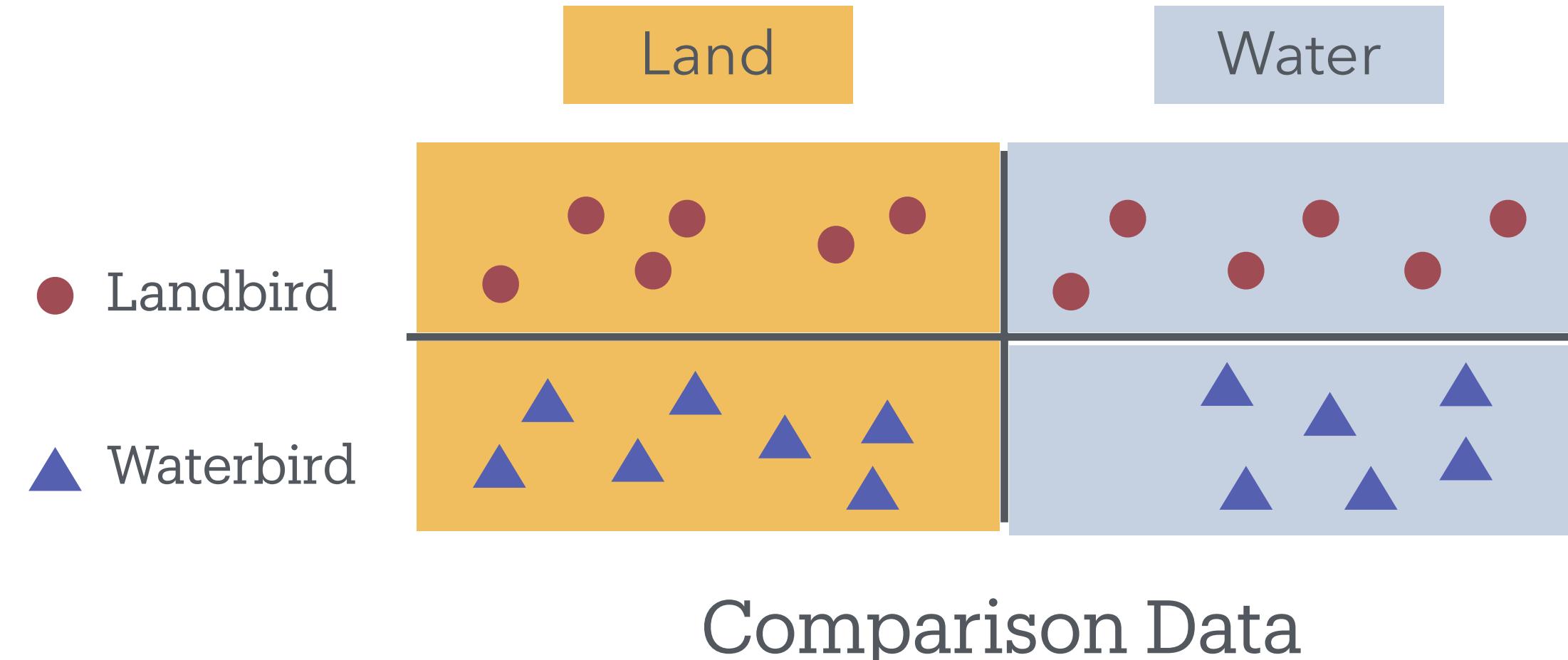
Spurious attribute label and True label: $y_s^{tr} = y^{tr} \rightarrow 100\%$

Invariant attribute label and True label: $y_{in}^{tr} = y^{tr} \rightarrow 100\%$

↑ Serious Spurious Correlation

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison



Group Distribution: $g = \{(\bullet, \text{Yellow}), (\bullet, \text{Light Blue}), (\Delta, \text{Yellow}), (\Delta, \text{Light Blue})\} = (6, 6, 6, 6)$

Spurious attribute label and True label: $y_s^c \neq y^c \rightarrow 50\%$

Invariant attribute label and True label: $y_{in}^c = y^c \rightarrow 100\%$

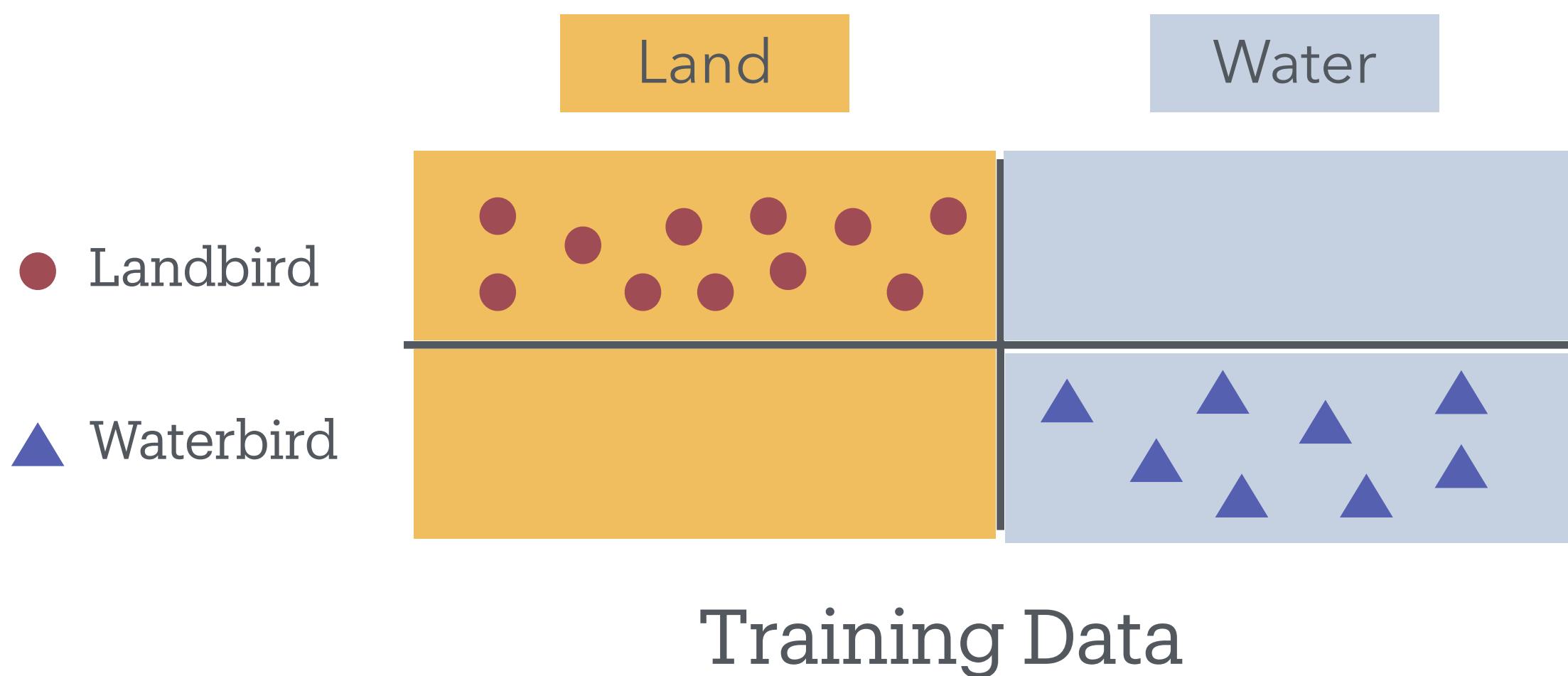
Slight Spurious Correlation

Goal: Inferring Preciser Group Label

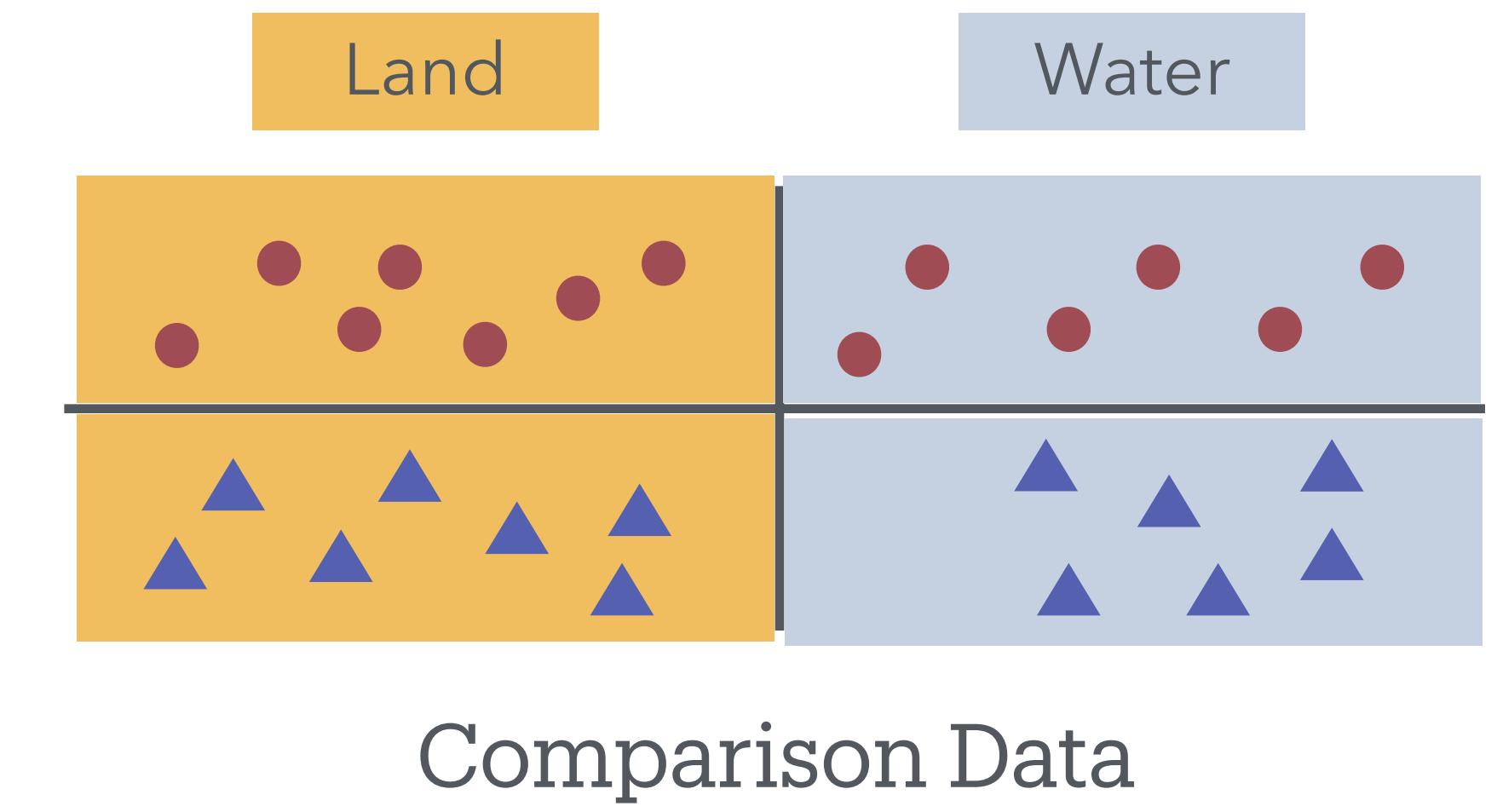
GIC: Group Inference via data Comparison

Spurious Correlation varies in Datasets with (slight) **different** group distribution

$$g = (10,0,0,8)$$



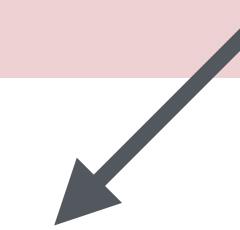
$$g = (6,6,6,6)$$



Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

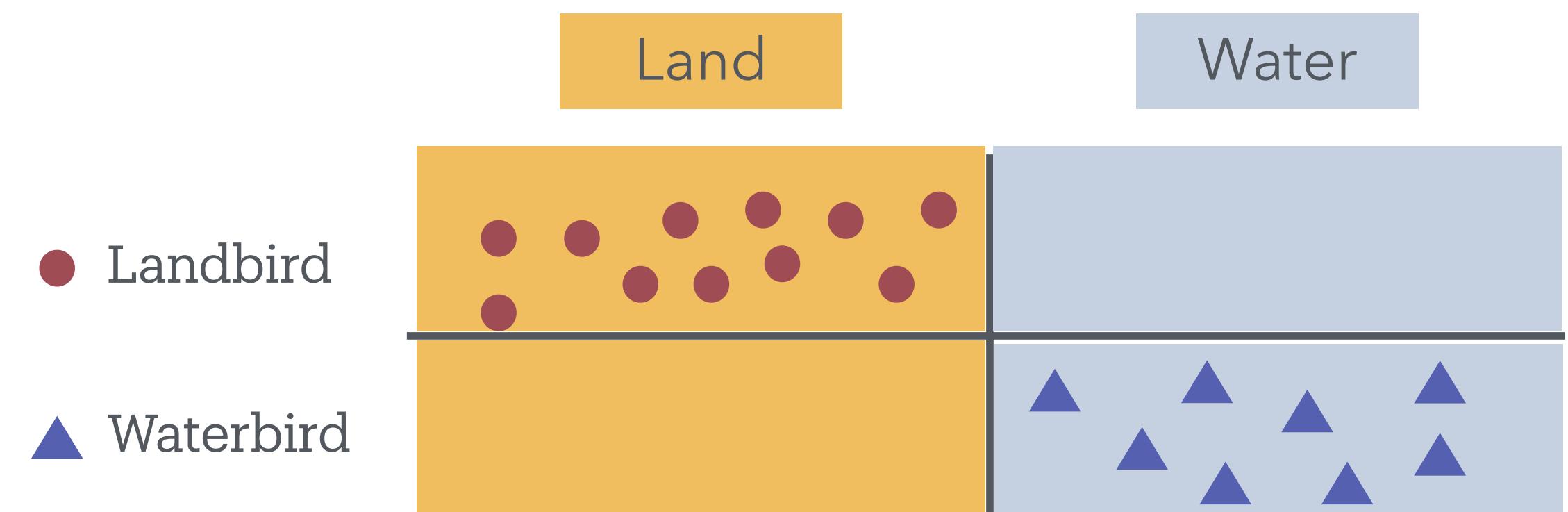
Spurious **Correlation** varies in Datasets with (slight) different group distribution



Term 1: **Correlation Term**

Encourage the high correlation between y and y_s in the training set.

$$\max_w I(y^{tr}; \hat{y}_{s,w}^{tr})$$



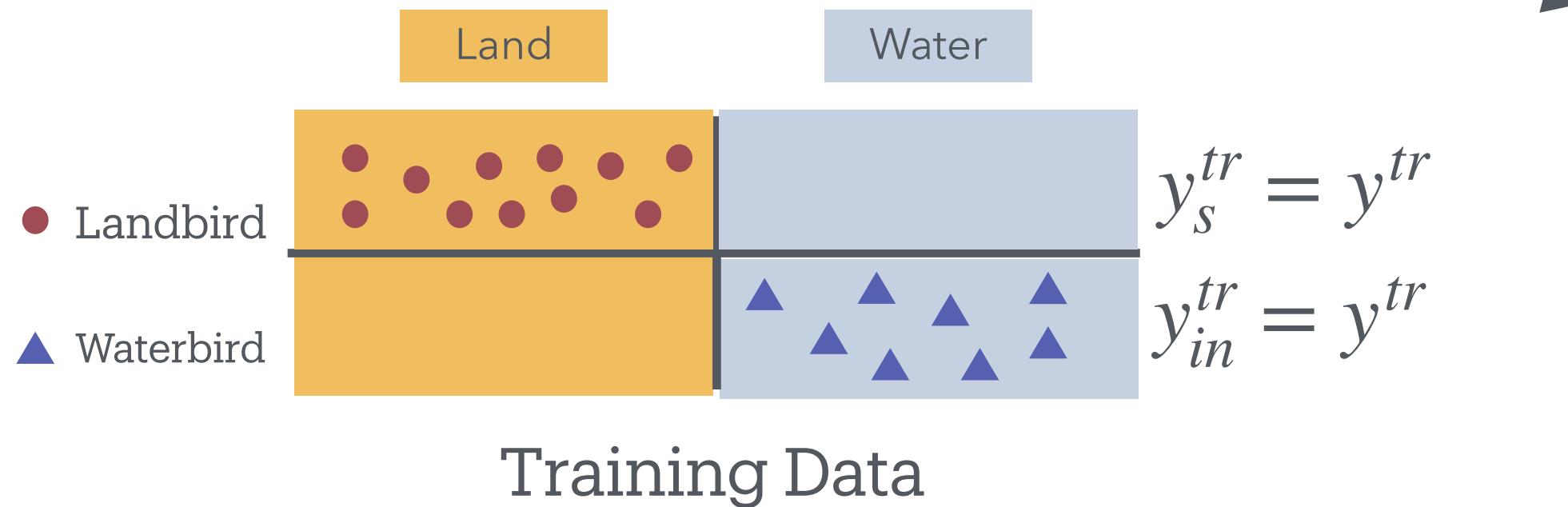
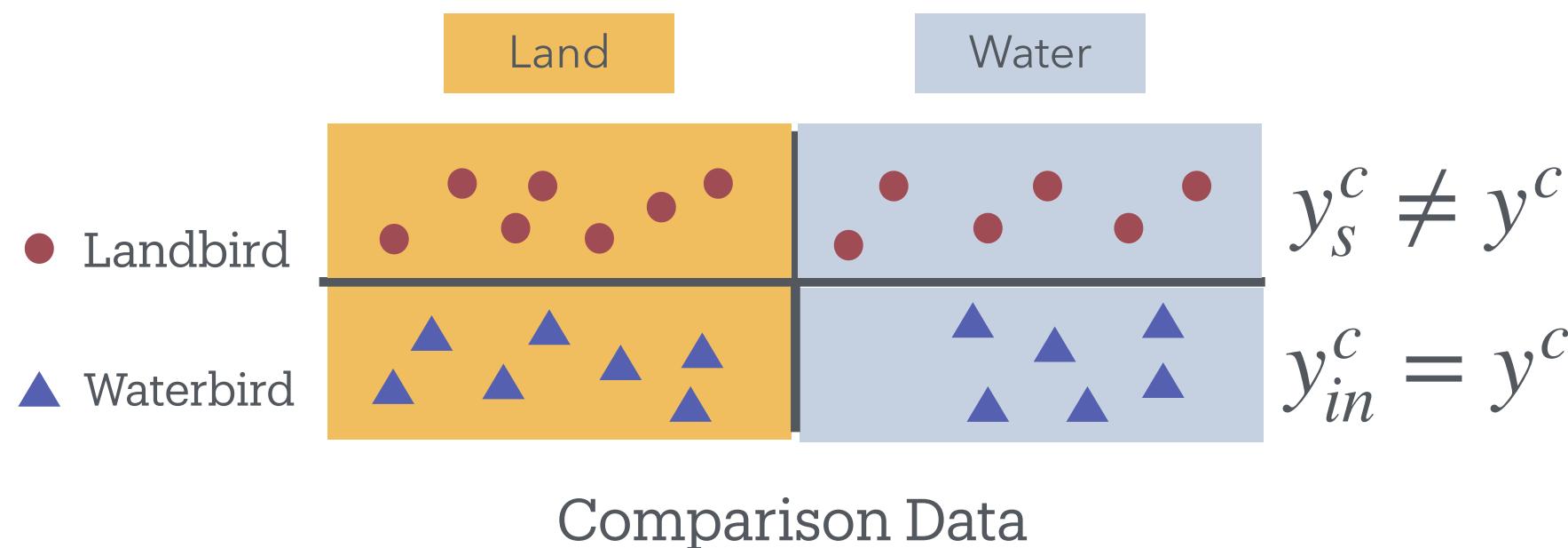
Training Data

Spurious attribute label and True label: $y_s = y$

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Spurious Correlation varies in Datasets with (slight) different group distribution



Term 2: Spurious Term

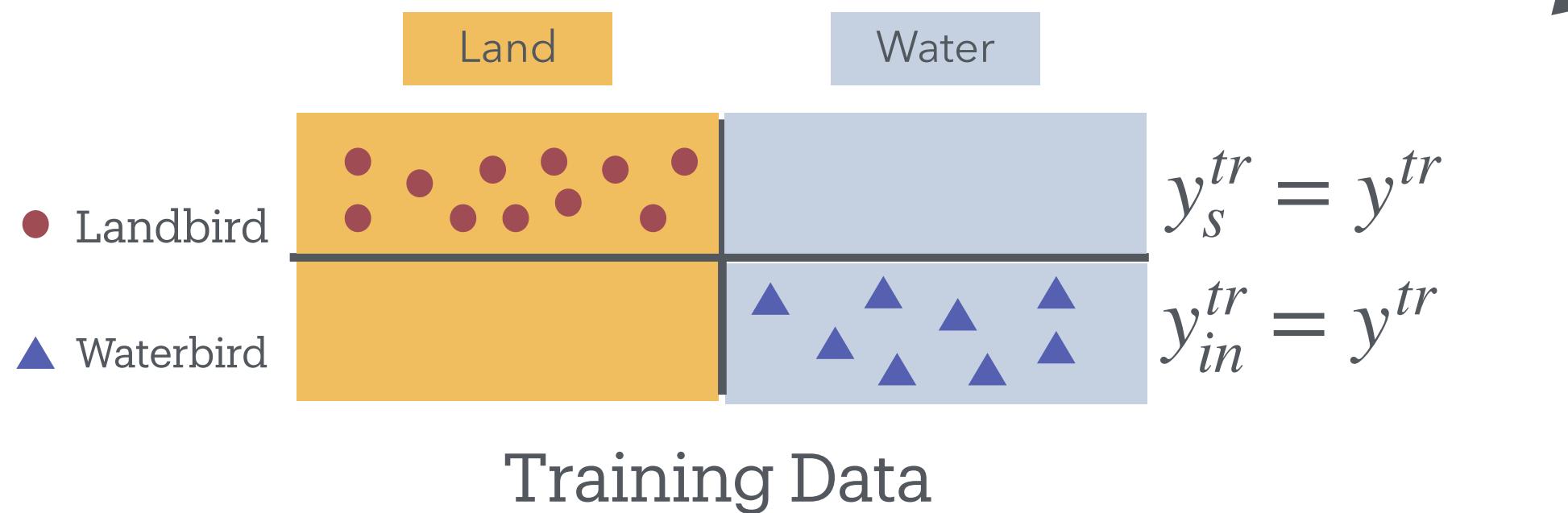
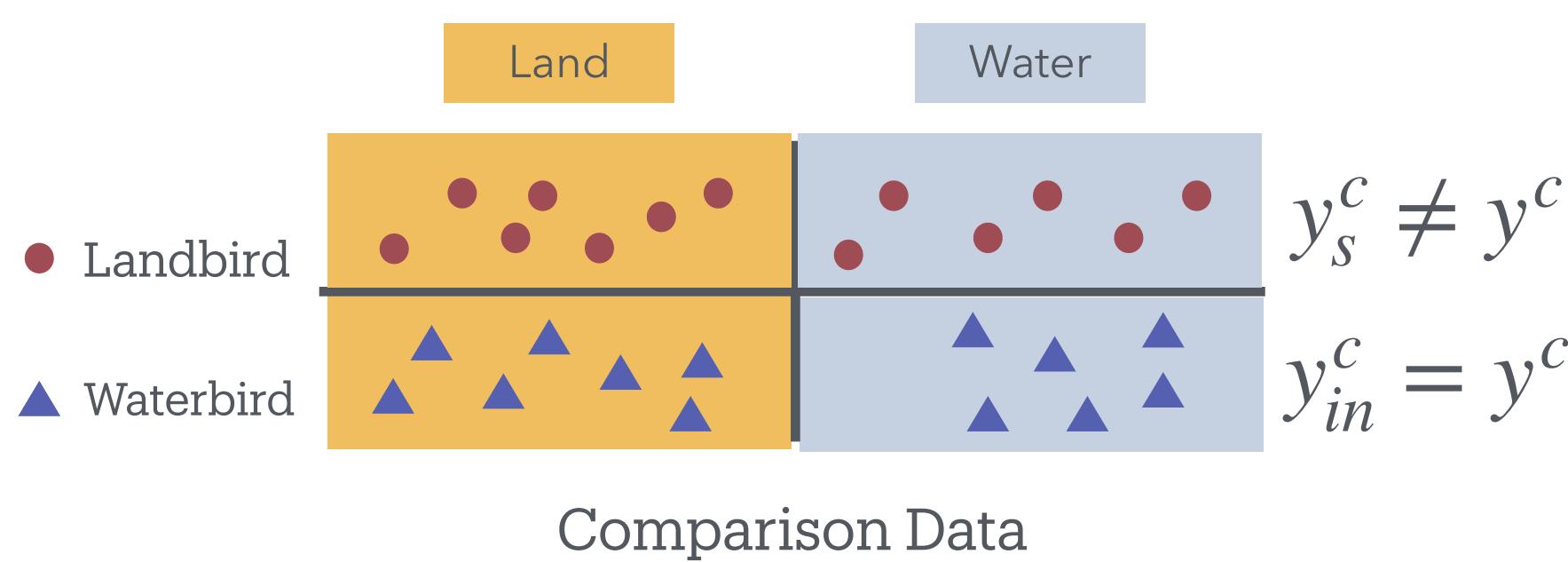
Variability in this correlation between datasets with different group distributions:

$$\max_w \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$$

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Spurious Correlation varies in Datasets with (slight) different group distribution



Term 2: **Spurious Term**

$$\max_w \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$$

Violating the invariant learning principle

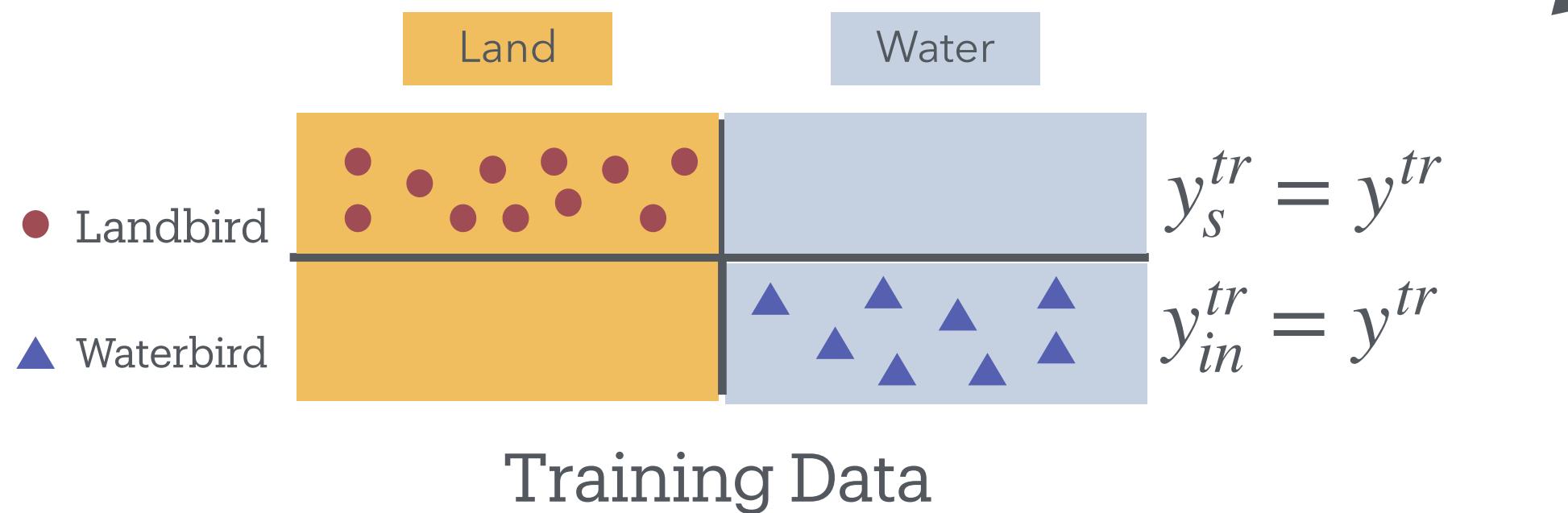
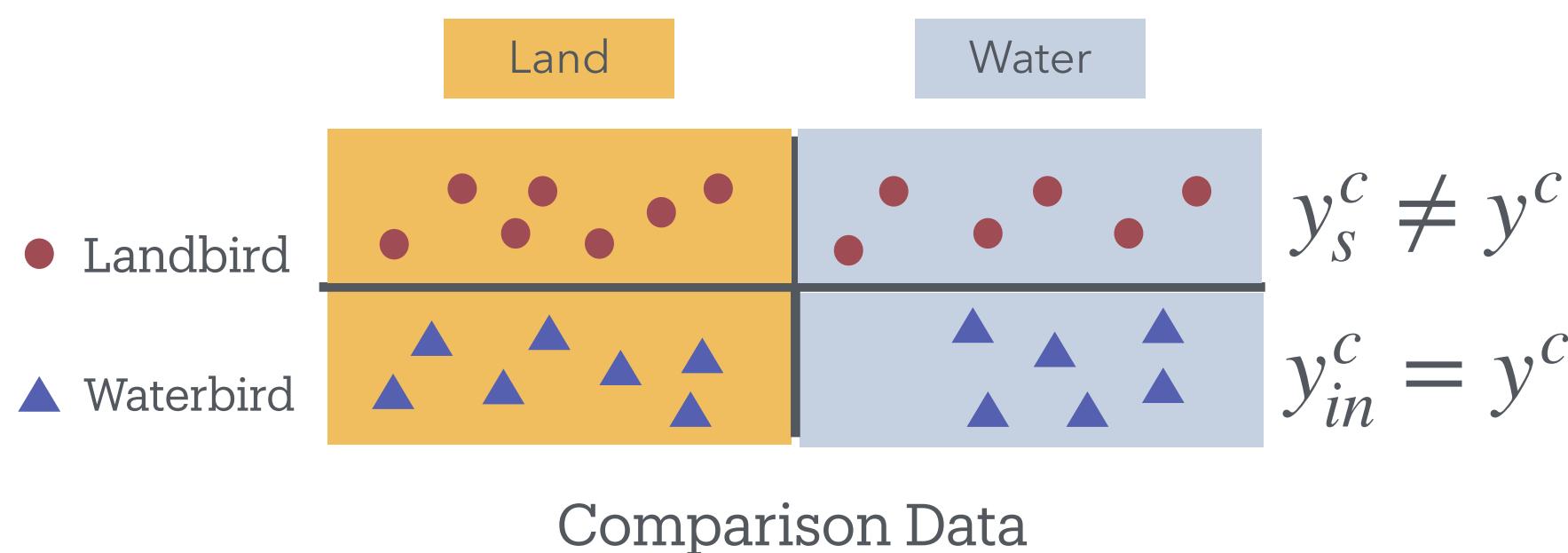
High Correlation: **Invariant attribute**

$$\text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c)) = 0$$

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Spurious Correlation varies in Datasets with (slight) different group distribution



Term 2: **Spurious Term**

$$\max_w \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$$

Violating the invariant learning principle

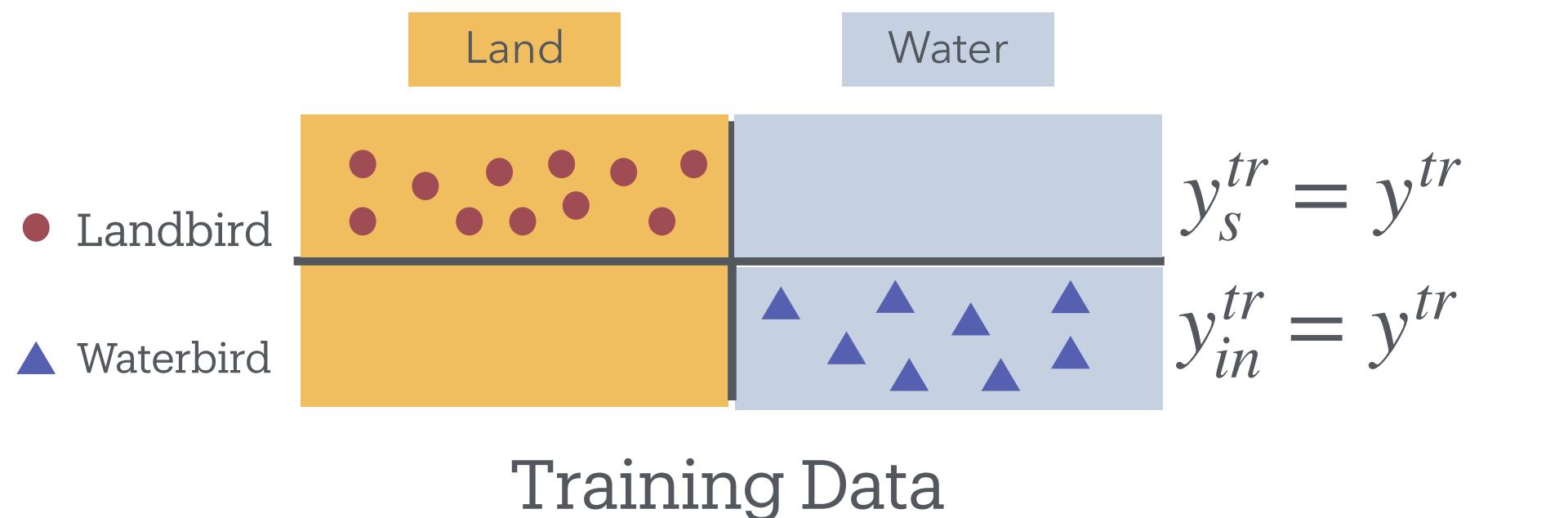
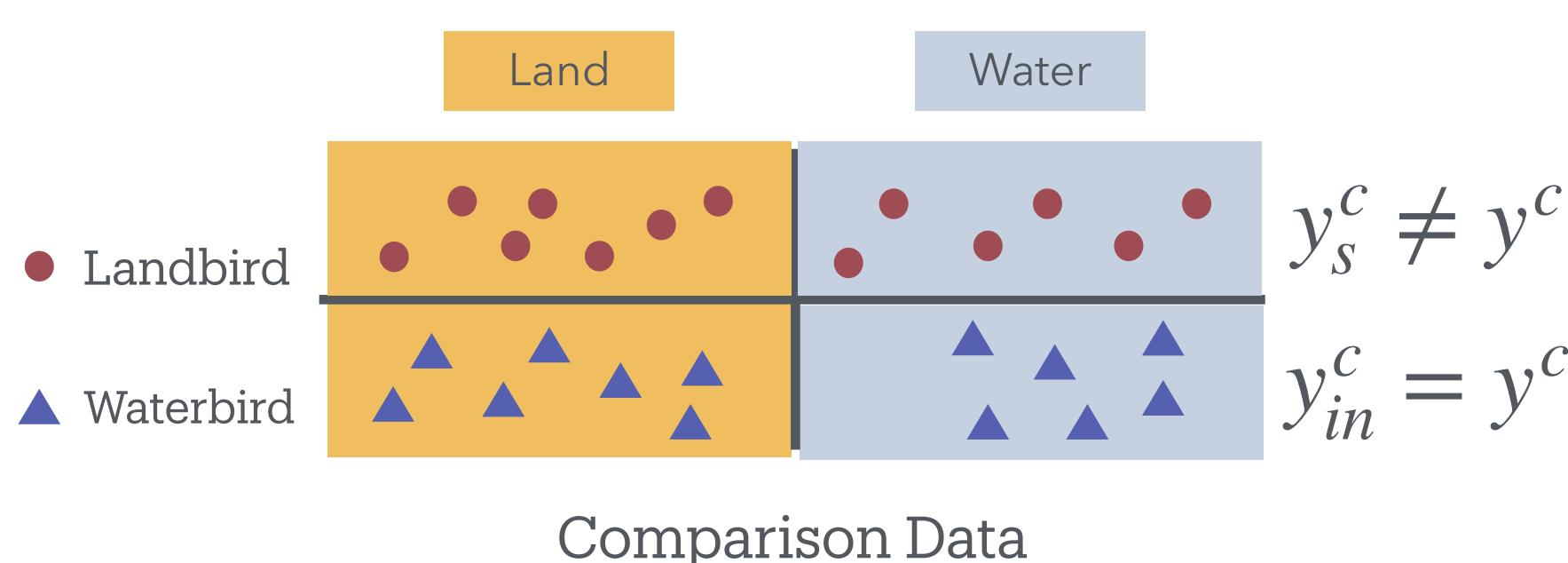
High Correlation: **Spurious attribute**

$$\text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c)) \geq 0$$

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Spurious Correlation varies in Datasets with (slight) different group distribution



Term 2: Correlation Term

Variability in this correlation between datasets with different group distributions:

$$\max_w \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$$

Violating the invariant learning principle

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Term 1: **Correlation Term**

Encourage the high correlation between y and y_s in the training set.

$$\max_w I(y^{tr}; \hat{y}_{s,w}^{tr})$$

Term 2: **Correlation Term**

Variability in this correlation between datasets with different group distributions:

$$\max_w \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$$

Training Objective: $\max_w I(y^{tr}; \hat{y}_{s,w}^{tr}) + \gamma \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$

where $\gamma \geq 0$ is a weighting parameter used to balance Correlation Term and Spurious Term.

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Term 1: **Correlation Term**

Encourage the high correlation between y and y_s in the training set.

$$\max_w I(y^{tr}; \hat{y}_{s,w}^{tr})$$

Term 2: **Correlation Term**

Variability in this correlation between datasets with different group distributions:

$$\max_w \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$$

Training Objective: $\max_w I(y^{tr}; \hat{y}_{s,w}^{tr}) + \gamma \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$

where $\gamma \geq 0$ is a weighting parameter used to balance Correlation Term and Spurious Term.

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Training Objective: $\max_w I(y^{tr}; \hat{y}_{s,w}^{tr}) + \gamma \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$

↓ Mutual information is difficult to accurately estimate
(Paninski, 2003; Belghazi et al., 2018)

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Training Objective: $\max_w I(y^{tr}; \hat{y}_{s,w}^{tr}) + \gamma \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$

↓ Mutual information is difficult to accurately estimate
(Paninski, 2003; Belghazi et al., 2018)

Term 1: **Correlation Term**

Encourage the high correlation between y and y_s in the training set.

Replace

$$\max_w I(y^{tr}; \hat{y}_{s,w}^{tr})$$

$$\min_w H(y^{tr}, \hat{y}_{s,w}^{tr})$$

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Training Objective: $\max_w I(y^{tr}; \hat{y}_{s,w}^{tr}) + \gamma \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$

Cannot handle the situation where the
comparison data is unlabeled (y^c).

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Training Objective: $\max_w I(y^{tr}; \hat{y}_{s,w}^{tr}) + \gamma \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$

Cannot handle the situation where the comparison data is unlabeled (y^c).

Term 2: **Correlation Term**

Variability in this correlation between datasets with different group distributions:

$$\max_w \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$$

Theorem 3.1

$$\text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c)) \geq \text{KL}(\mathbb{P}(\mathbf{z}^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(\mathbf{z}^c | \hat{y}_{s,w}^c))$$

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Training Objective: $\max_w I(y^{tr}; \hat{y}_{s,w}^{tr}) + \gamma \text{KL}(\mathbb{P}(y^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(y^c | \hat{y}_{s,w}^c))$

Better Training Objective:

Labeled Comparison Data (GIC_{c_y})

$$\min_w H(y^{tr}, \hat{y}_{s,w}^{tr}) - \gamma \text{KL}(\mathbb{P}(\mathbf{y}^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(\mathbf{y}^c | \hat{y}_{s,w}^c))$$

Unlabeled Comparison Data (GIC_c)

$$\min_w H(y^{tr}, \hat{y}_{s,w}^{tr}) - \gamma \text{KL}(\mathbb{P}(\mathbf{z}^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(\mathbf{z}^c | \hat{y}_{s,w}^c))$$

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Better Training Objective:

Labeled Comparison Data (GIC_{c_y})

$$\min_w H(y^{tr}, \hat{y}_{s,w}^{tr}) - \gamma \text{KL}(\mathbb{P}(\mathbf{y}^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(\mathbf{y}^c | \hat{y}_{s,w}^c))$$

The connection with ERM-based method:

When there is **no** group difference or $\gamma = 0$

GIC **degenerates** to ERM

Unlabeled Comparison Data (GIC_c)

$$\min_w H(y^{tr}, \hat{y}_{s,w}^{tr}) - \gamma \text{KL}(\mathbb{P}(\mathbf{z}^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(\mathbf{z}^c | \hat{y}_{s,w}^c))$$

GIC: Regularized ERM

ERM-based inference should serve as the performance baseline for GIC.

Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison

Better Training Objective:

Labeled Comparison Data (GIC_{c_y})

$$\min_w H(y^{tr}, \hat{y}_{s,w}^{tr}) - \gamma \text{KL}(\mathbb{P}(\mathbf{y}^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(\mathbf{y}^c | \hat{y}_{s,w}^c))$$

Unlabeled Comparison Data (GIC_c)

$$\min_w H(y^{tr}, \hat{y}_{s,w}^{tr}) - \gamma \text{KL}(\mathbb{P}(\mathbf{z}^{tr} | \hat{y}_{s,w}^{tr}) || \mathbb{P}(\mathbf{z}^c | \hat{y}_{s,w}^c))$$

Algorithm 1 GIC

Input: Training data \mathcal{D} ; comparison data \mathcal{C} ; feature extractor $\Phi(\cdot)$; weighting parameters γ ; training epochs K of GIC

Stage 1: Extracting feature representations

Obtain $\mathbf{z}^{tr} = \Phi(\mathbf{x}^{tr})$, $\mathbf{z}^c = \Phi(\mathbf{x}^c)$ where $\mathbf{x}^{tr} \in \mathcal{D}$, $\mathbf{x}^c \in \mathcal{C}$.

Stage 2: Inferring group labels

Initialize the parameters \mathbf{w} for spurious attribute classifier f_{GIC} .

for epoch 1 to K **do**

if the true label of \mathcal{C} is available **then**
 Optimizing Equation (11) to update \mathbf{w} .

else

 Optimizing Equation (12) to update \mathbf{w} .
 end if

end for

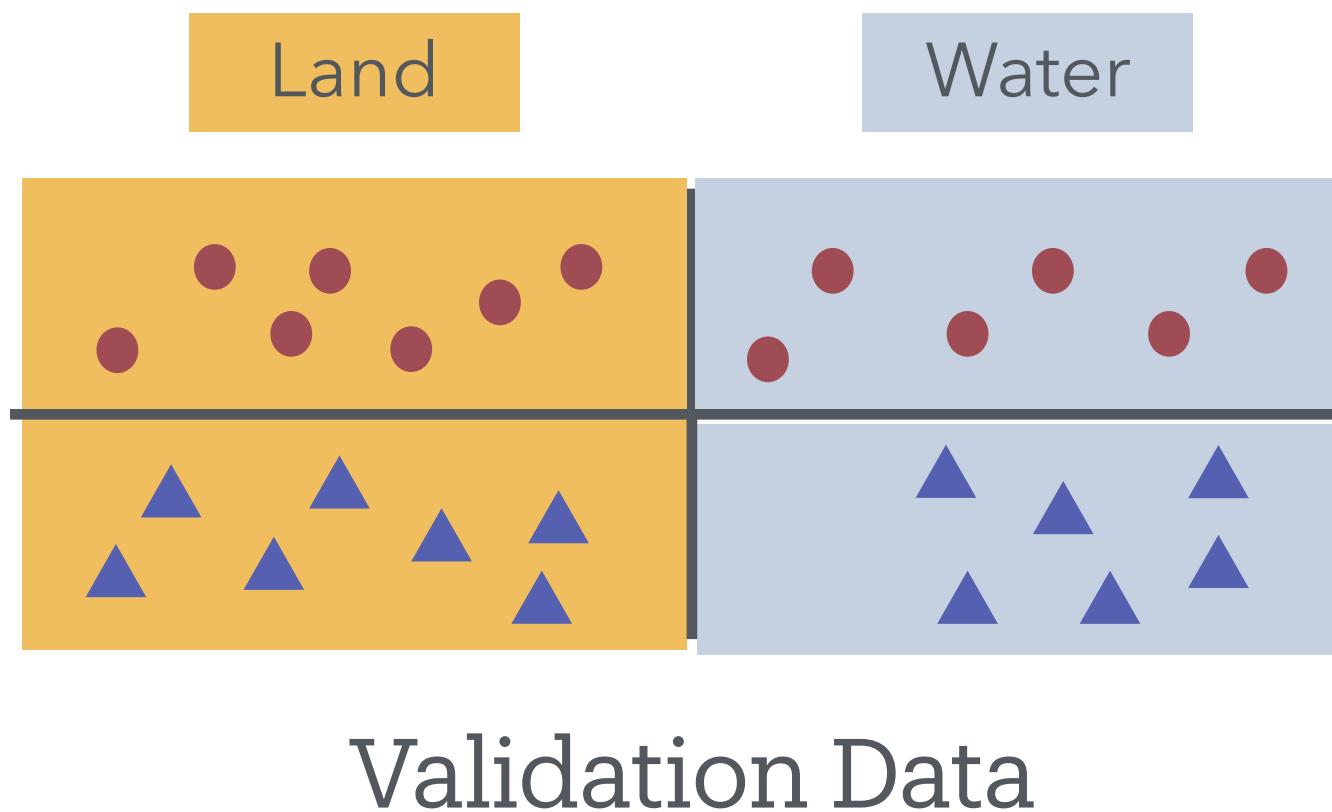
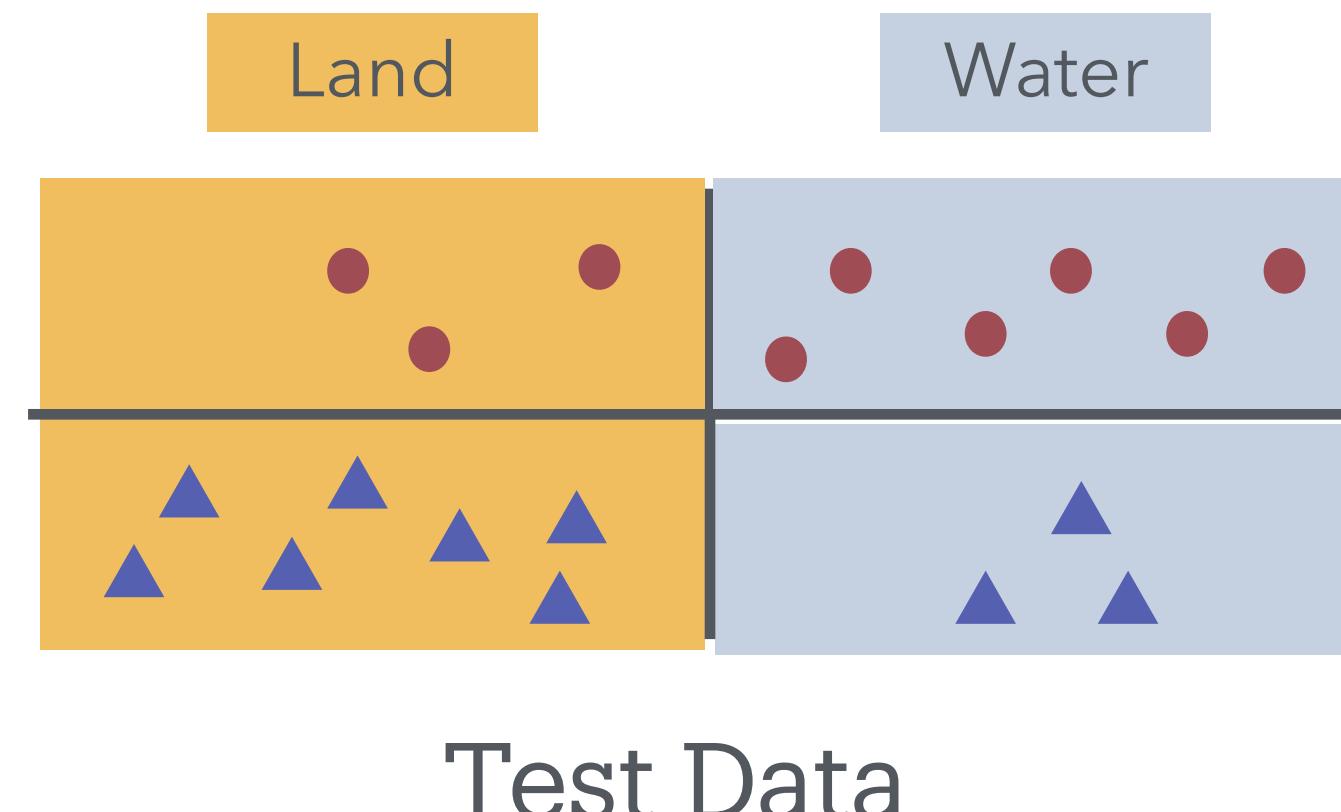
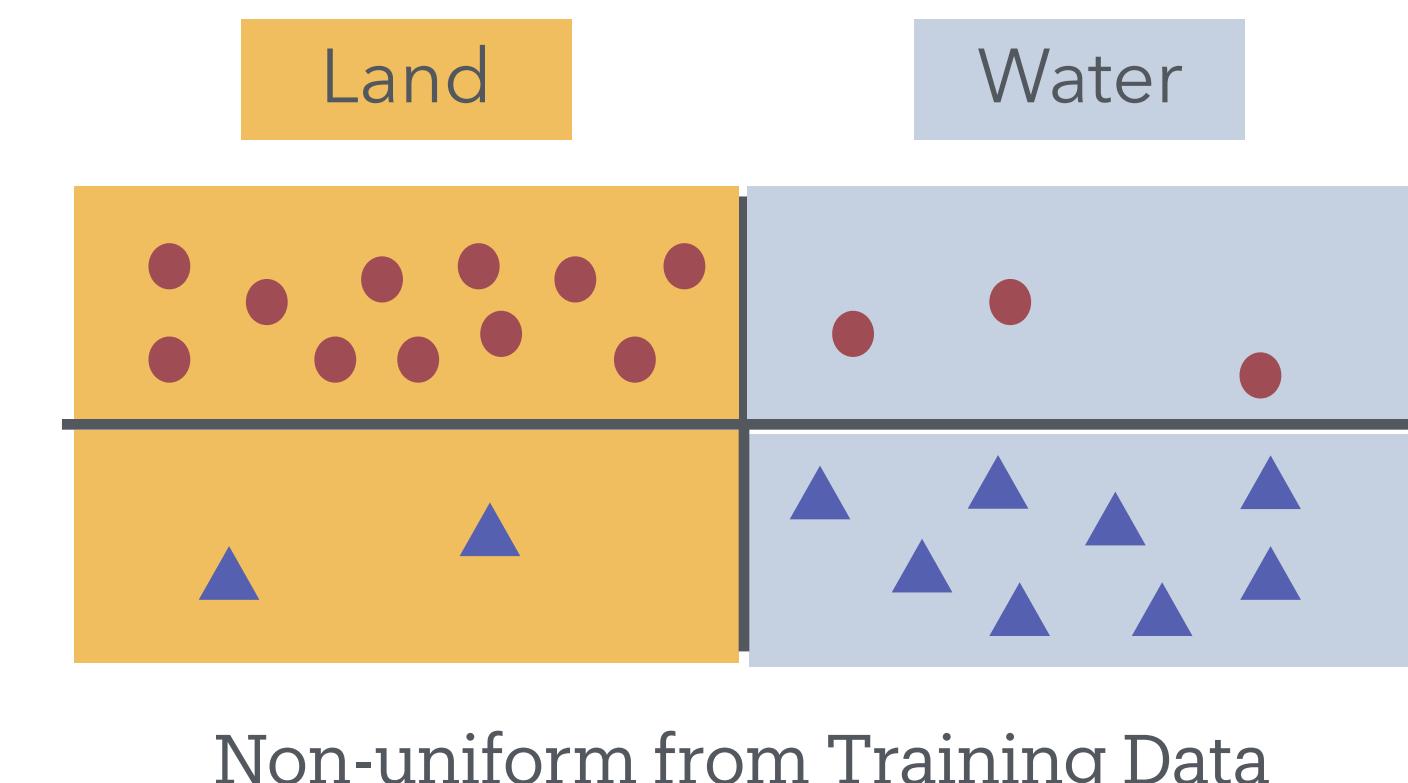
Infer spurious attribute labels $\hat{y}_{s,w}^{tr} = f_{\text{GIC}}(\mathbf{z}^{tr}; \mathbf{w})$.

Return: Pseudo group labels $\hat{g} = (y^{tr}, \hat{y}_{s,w}^{tr})$.

Goal: Inferring Preciser Group Label

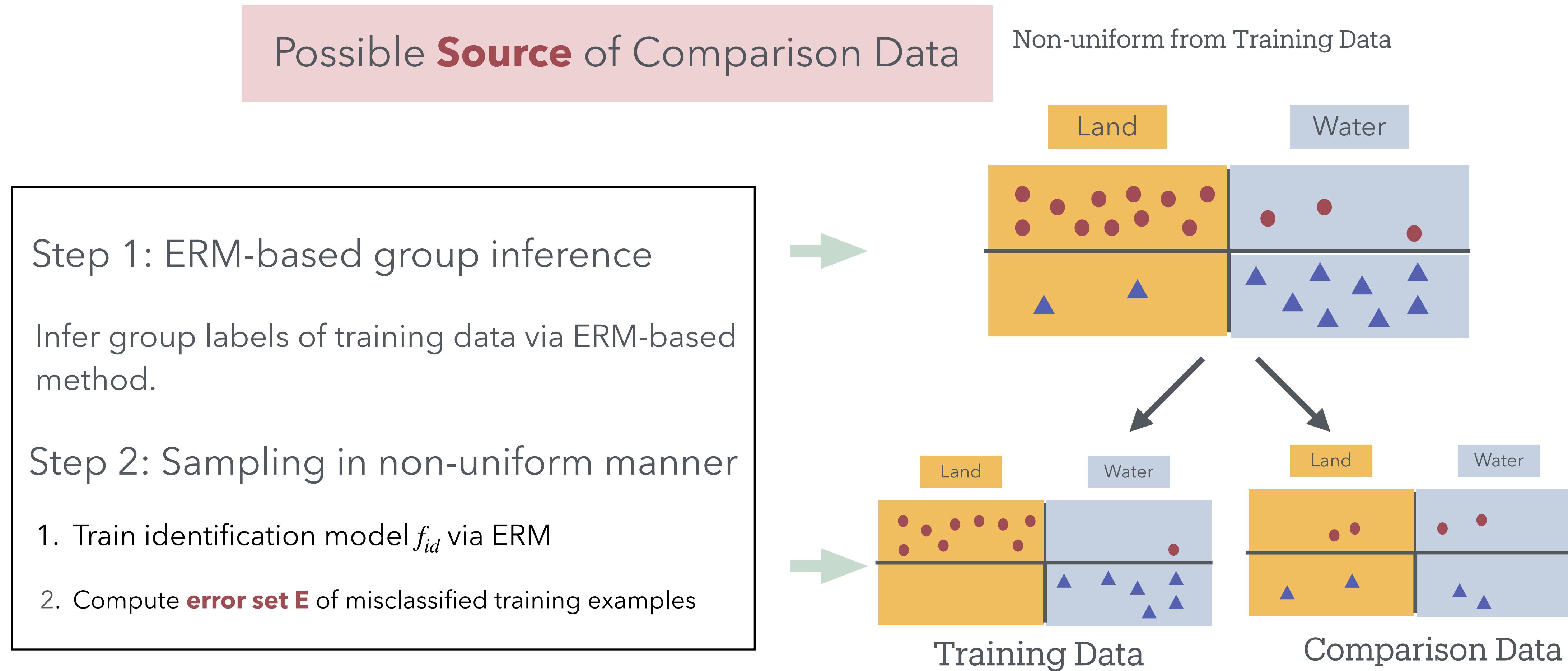
GIC: Group Inference via data Comparison

Possible **Source** of Comparison Data



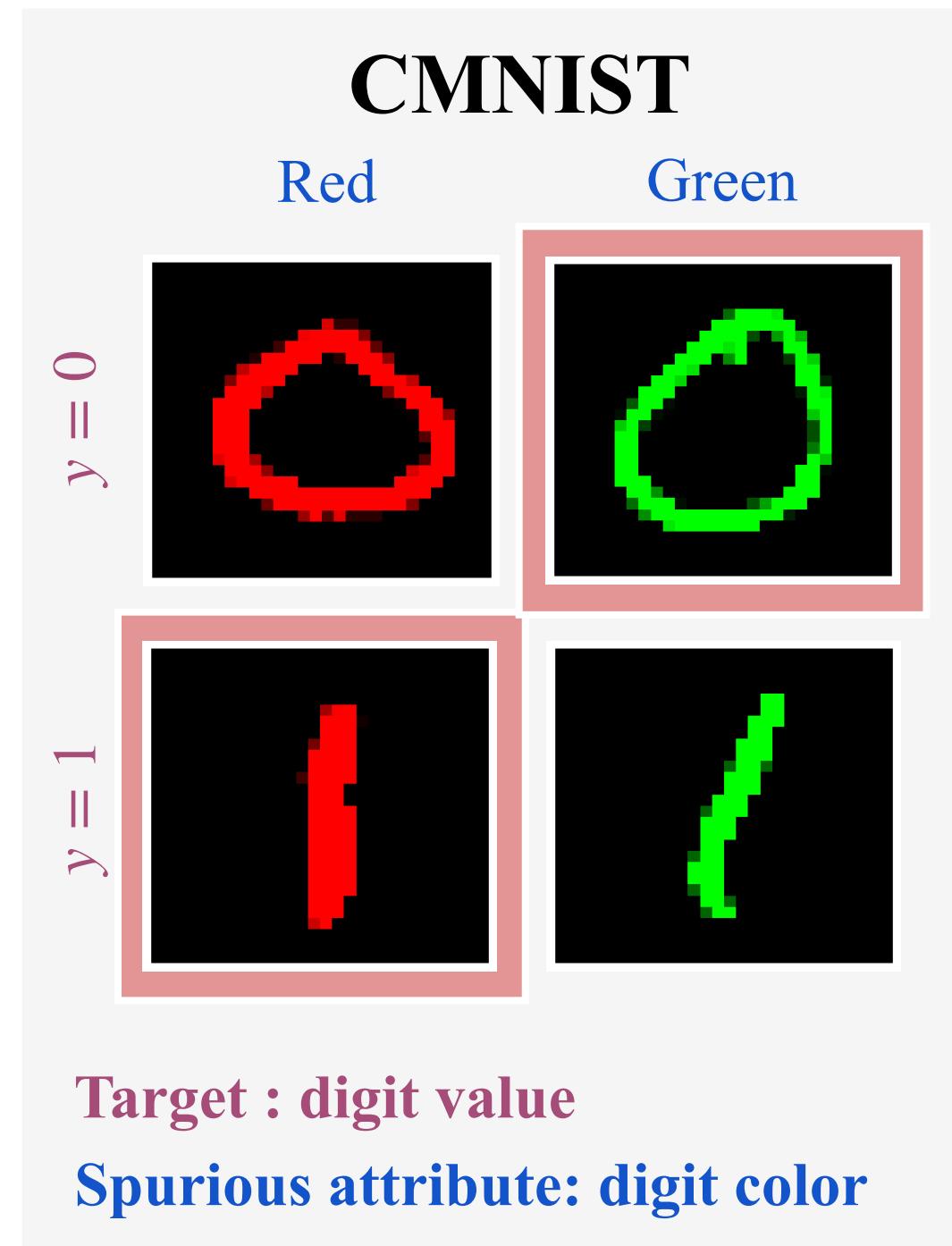
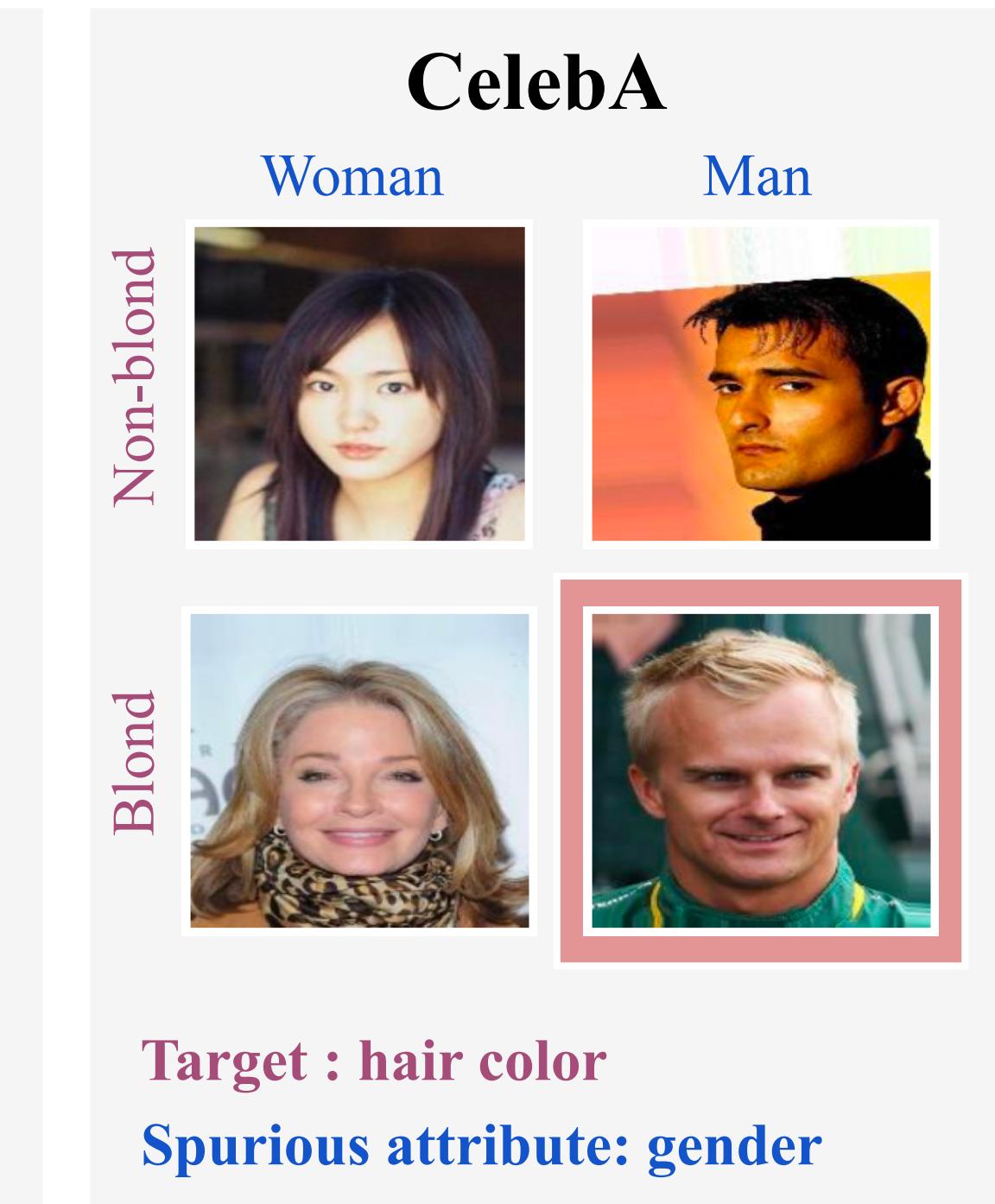
Goal: Inferring Preciser Group Label

GIC: Group Inference via data Comparison



Goal: Inferring Preciser Group Label

Experiments on GIC: Datasets



Visualization of evaluated datasets with minority groups marked by red boxes

Comparison Data: (unlabeled) validation data

Goal: Inferring Preciser Group Label

Experiments on GIC: Performance in Mitigating Spurious Correlation

Method	Group Labels Train / Val	CMNIST		Waterbirds		CelebA		CivilComments		
		Avg.	Worst	Avg.	Worst	Avg.	Worst	Avg.	Worst	
<i>Oracle Group labels are required</i>										
GroupDRO	✓/✗	74.4±0.5	69.8±2.6	92.0±0.6	89.9±0.6	91.2±0.4	87.2±1.6	89.9±0.5	70.0±2.0	
LISA	✓/✗	74.0±0.1	73.3±0.2	91.8±0.3	89.2±0.6	92.4±0.4	89.3±1.1	89.2±0.9	72.6±0.1	
DFR	✗/✓	72.2±1.1	70.6±1.1	94.2±0.4	92.9±0.2	91.3±0.3	88.3±1.1	87.2±0.3	70.1±0.8	
SSA	✗/✓	75.0±0.3	71.1±0.4	92.2±0.9	89.0±0.6	92.8±0.1	89.8±1.3	88.2±2.0	69.9±2.0	
<i>Oracle Group labels are not required</i>										
ERM	✗/✗	12.9±0.8	3.4±0.9	97.3±1.0	62.6±0.3	94.9±0.3	47.7±2.1	92.1±0.4	58.6±1.7	
JTT	✗/✗	76.4±3.3	67.3±5.1	89.3±0.7	83.8±1.2	88.1±0.3	81.5±1.7	91.1	69.3	
EIL	✗/✗	74.1±0.2	65.5±5.1	96.5±0.2	77.2±1.0	85.7±0.1	81.7±0.8	90.5±0.2	67.0±2.4	
CnC	✗/✗	-	-	90.9±0.1	88.5 ±0.3	89.9±0.5	88.8±0.9	81.7±0.5	68.9±2.1	
Invariant learning methods: Mixup	GIC_{C_y}-M	✗/✗	73.2±0.2	<u>72.2</u> ±0.5	89.6±1.3	<u>86.3</u> ±0.1	91.9±0.1	<u>89.4</u> ±0.2	90.0±0.2	<u>72.5</u> ±0.3
	GIC_C-M	✗/✗	73.1±0.5	<u>71.7</u> ±0.3	89.3±0.8	<u>85.4</u> ±0.1	92.1±0.1	<u>89.5</u> ±0.0	89.7±0.0	<u>72.3</u> ±0.2

Better Worst-group Accuracy

Goal: Inferring Preciser Group Label

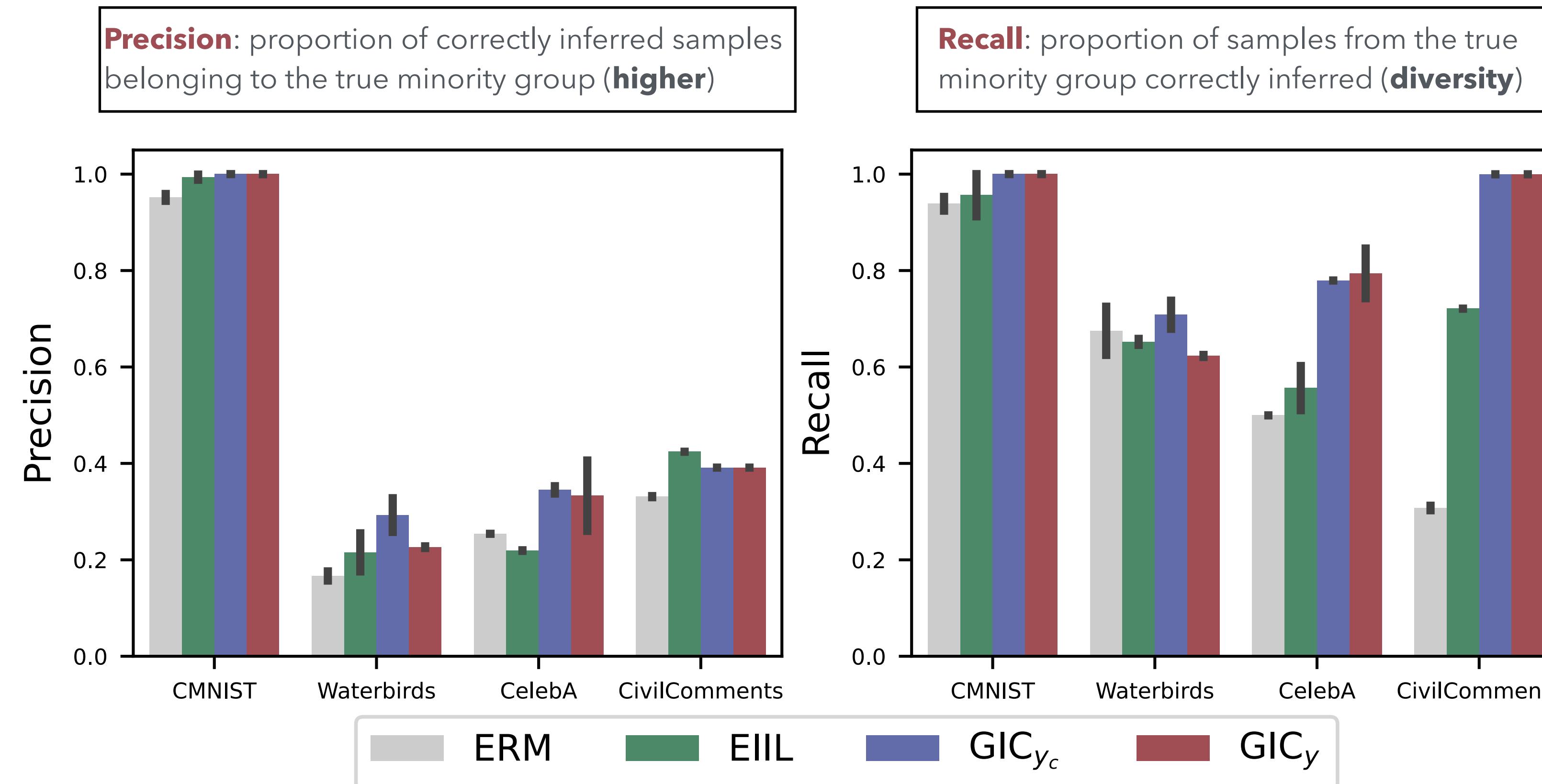
Experiments on GIC: Performance in Mitigating Spurious Correlation

Method	Group Labels Train / Val	CMNIST		Waterbirds		CelebA		CivilComments	
		Avg.	Worst	Avg.	Worst	Avg.	Worst	Avg.	Worst
<i>Oracle Group labels are required</i>									
GroupDRO	✓/✗	74.4±0.5	69.8±2.6	92.0±0.6	89.9±0.6	91.2±0.4	87.2±1.6	89.9±0.5	70.0±2.0
LISA	✓/✗	74.0±0.1	73.3±0.2	91.8±0.3	89.2±0.6	92.4±0.4	89.3±1.1	89.2±0.9	72.6±0.1
DFR	✗/✓	72.2±1.1	70.6±1.1	94.2±0.4	92.9±0.2	91.3±0.3	88.3±1.1	87.2±0.3	70.1±0.8
SSA	✗/✓	75.0±0.3	71.1±0.4	92.2±0.9	89.0±0.6	92.8±0.1	89.8±1.3	88.2±2.0	69.9±2.0
<i>Oracle Group labels are not required</i>									
ERM	✗/✗	12.9±0.8	3.4±0.9	97.3±1.0	62.6±0.3	94.9±0.3	47.7±2.1	92.1±0.4	58.6±1.7
JTT	✗/✗	76.4±3.3	67.3±5.1	89.3±0.7	83.8±1.2	88.1±0.3	81.5±1.7	91.1	69.3
EIL	✗/✗	74.1±0.2	65.5±5.1	96.5±0.2	77.2±1.0	85.7±0.1	81.7±0.8	90.5±0.2	67.0±2.4
CnC	✗/✗	-	-	90.9±0.1	88.5±0.3	89.9±0.5	88.8±0.9	81.7±0.5	68.9±2.1
$\text{GIC}_{\mathcal{C}_y}\text{-M}$	✗/✗	73.2±0.2	<u>72.2</u> ±0.5	89.6±1.3	<u>86.3</u> ±0.1	91.9±0.1	<u>89.4</u> ±0.2	90.0±0.2	<u>72.5</u> ±0.3
$\text{GIC}_{\mathcal{C}}\text{-M}$	✗/✗	73.1±0.5	<u>71.7</u> ±0.3	89.3±0.8	<u>85.4</u> ±0.1	92.1±0.1	<u>89.5</u> ±0.0	89.7±0.0	<u>72.3</u> ±0.2

Even competing with methods with group labels on certain datasets

Goal: Inferring Preciser Group Label

Experiments on GIC: Performance in Inferring Group Labels



Inferring **Preciser** Group Label

Goal: Inferring Preciser Group Label

Experiments on GIC: Performance in Inferring Group Labels

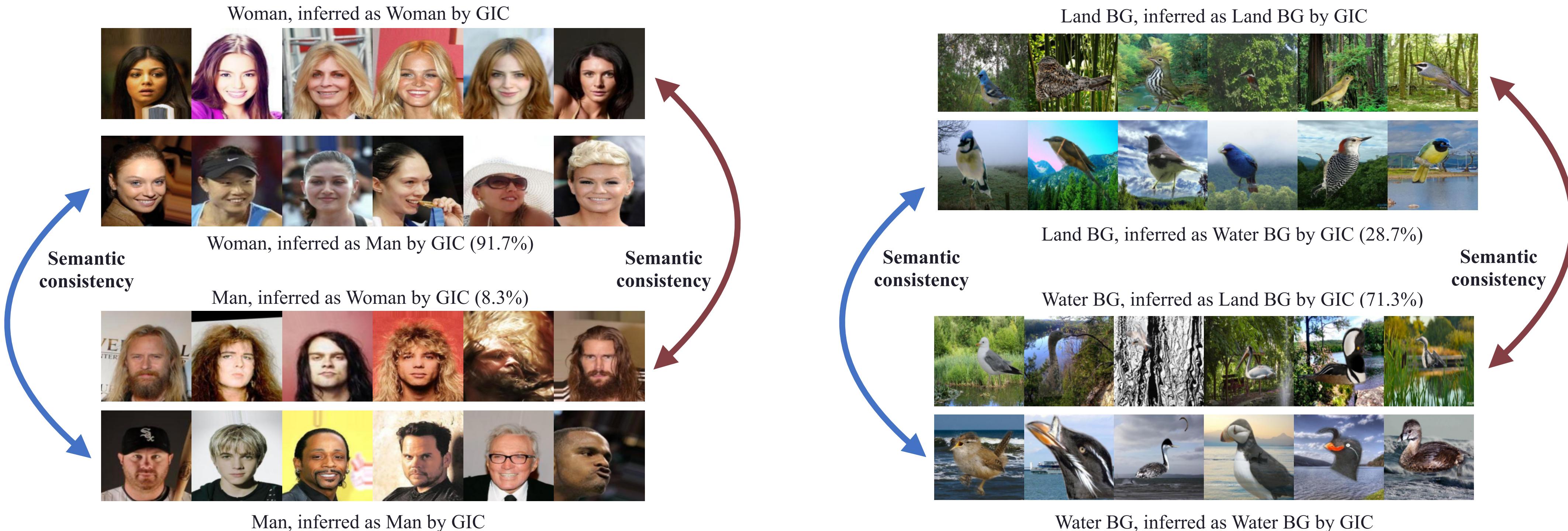
Consider 4 different invariant learning methods

Method	+GroupDRO		+Subsample		+Upsample		+Mixup	
	Waterbirds	CelebA	Waterbirds	CelebA	Waterbirds	CelebA	Waterbirds	CelebA
ERM	75.6±0.4	77.2±0.1	79.4±0.3	78.5±0.1	83.8±1.2	81.5±1.7	82.1±0.8	80.6±1.7
EI	77.2±1.0	81.7±0.8	81.9±1.4	82.8±0.5	81.3±0.7	84.8±0.2	85.7±0.4	84.9±3.7
GIC_{C_y}	80.2±0.1	82.1±0.3	83.5±0.8	86.1±2.2	84.1±0.0	87.2±0.0	86.3±0.1	89.4±0.2
GIC_C	79.2±0.4	79.7±0.6	82.1±1.1	83.1±0.3	82.1±0.7	87.8±1.1	85.4±0.1	89.5±0.0

Preciser Group Label makes higher worst-group accuracy

Goal: Inferring Preciser Group Label

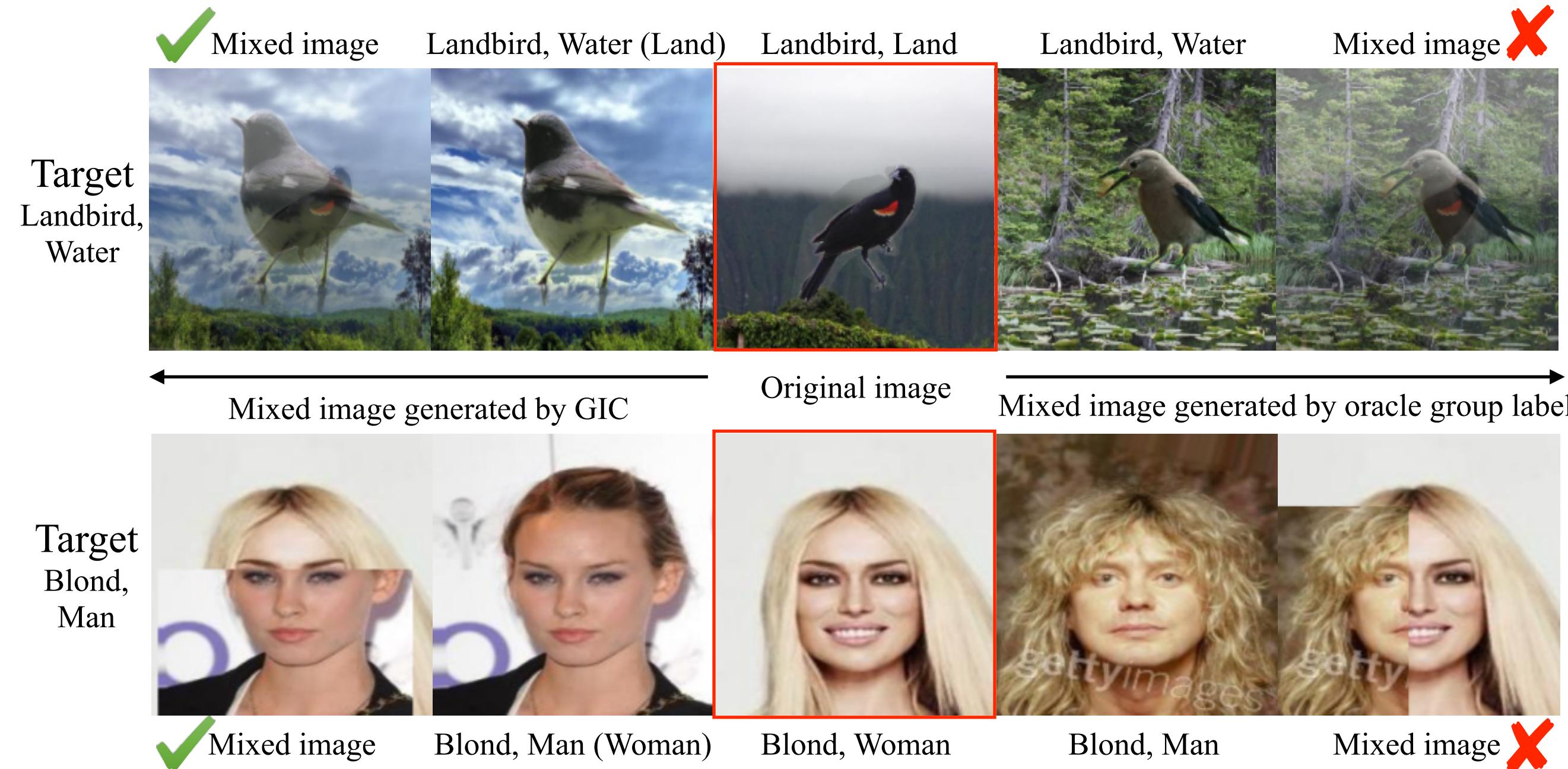
Experiments on GIC: Error Cases Analyse



Semantic Consistency

Goal: Inferring Preciser Group Label

Experiments on GIC: Error Cases Analyse



High semantic consistency benefits methods achieving invariant learning by **disrupting image semantics**.

Summary

1. Standard ERM may prioritize learning spurious correlations, leading to **poor accuracy** on groups where these correlations do not hold.

Summary

1. Standard ERM may prioritize learning spurious correlations, leading to **poor accuracy** on groups where these correlations do not hold.
2. Improving worst-group accuracy requires group labels: **performs well** but is **expensive**.

Summary

1. Standard ERM may prioritize learning spurious correlations, leading to **poor accuracy** on groups where these correlations do not hold.
2. Improving worst-group accuracy requires group labels: **performs well** but is **expensive**.
3. Group inferred methods have **performance gaps** compared to group annotation utilized methods and may not be applicable when **prior information** is **unavailable**.

Summary

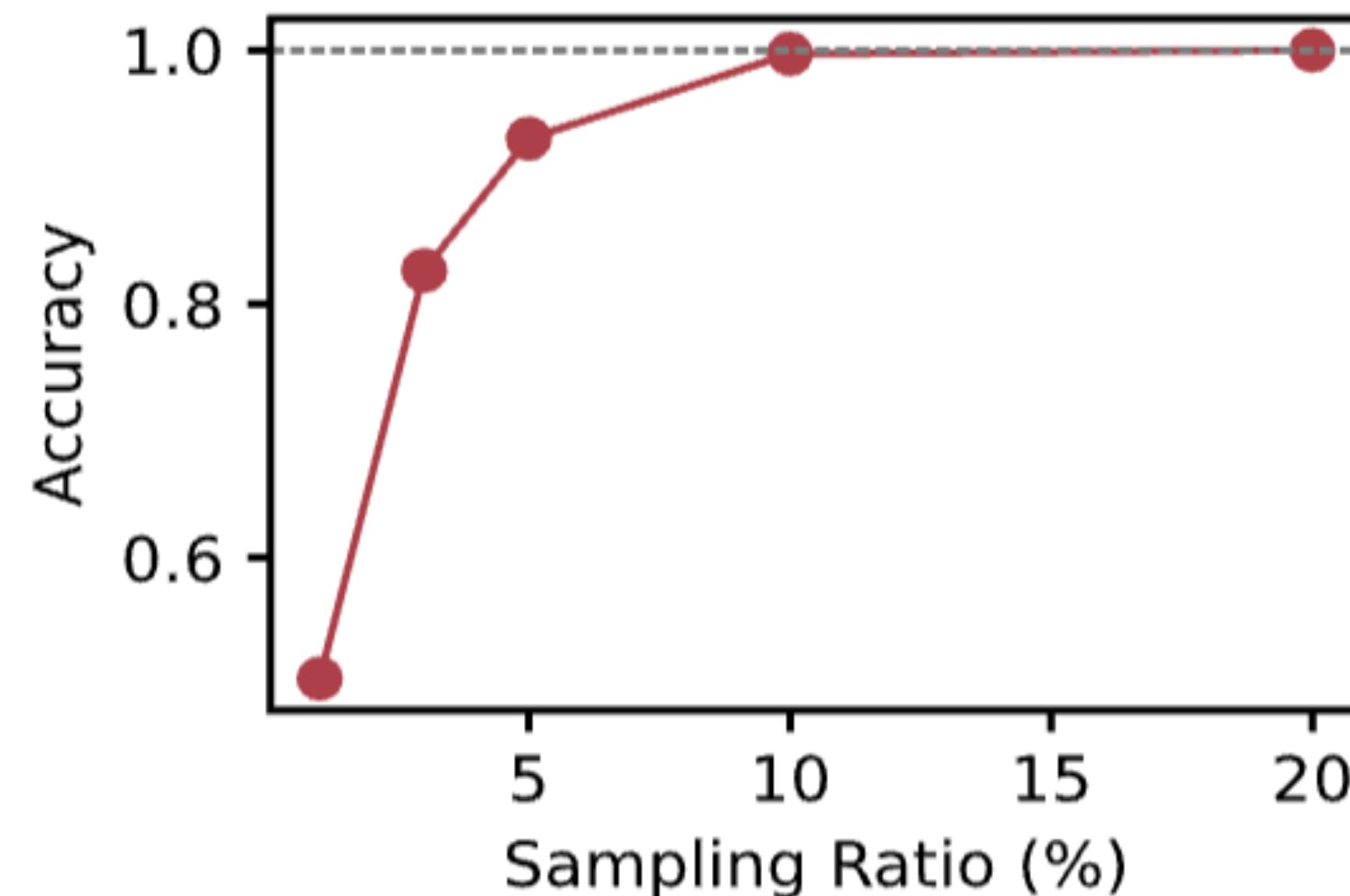
1. Standard ERM may prioritize learning spurious correlations, leading to **poor accuracy** on groups where these correlations do not hold.
2. Improving worst-group accuracy requires group labels: **performs well** but is **expensive**.
3. Group inferred methods have **performance gaps** compared to group annotation utilized methods and may not be applicable when **prior information** is **unavailable**.
4. GIC: more **preciser** inferring group labels to improve the worst-group performance; **semantic consistency** aids in mitigating spurious correlations.

Thanks

Appendix: Inferring Preciser Group Label

More Experiments on GIC

Comparison Data: Sampling non-uniformly from training data



Method	CMNIST	Waterbirds	CelebA
<i>validation</i>			
$\text{GIC}_{\mathcal{C}_y}\text{-M}$	72.2 ± 0.5	86.3 ± 0.1	89.4 ± 0.2
$\text{GIC}_{\mathcal{C}}\text{-M}$	71.7 ± 0.3	85.4 ± 0.1	89.5 ± 0.0
<i>non-uniform sampling.</i>			
$\text{GIC}_{\mathcal{C}_t}\text{-M}$	72.2 ± 0.1	85.7 ± 0.3	87.5 ± 0.7

Appendix: Inferring Preciser Group Label

More Experiments on GIC

Slight group difference is enough for GIC-based group inference

