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l Motivation
Why Long Context LLMs?
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What inputs can LLMs handle with different context lengths?
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l Motivation

* As the demand for long-context large language models (LLMs) increases, models with context
windows of up to 128k or even 1M tokens are becoming increasingly prevalent.
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| The Problem of Long Context: Large KV Cache

Large KV cache slows down long context inference

* However, long-context LLM inference is challenging since the inference speed decreases
significantly as the sequence length grows.

* This slowdown is primarily caused by loading a large KV cache during attention.
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| The Sparsity in Attention Mechanism

* Previous research has highlighted the inherent sparsity in attention mechanism.

* Due to this property of self-attention, a small portion of tokens in the KV cache, called critical
tokens, can accumulate sufficient attention scores, capturing the most important inter-token
relationships.
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| The Limits of Previous Methods

 Many previous efforts have been dedicated to compressing the size of the KV cache to
accelerate attention and reduce memory usage.

* These methods decide which parts of the KV cache to discard based on historical information or
current states, but discarded tokens might be important for future tokens, which may cause

the loss of important information.
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| The Limits of Previous Methods

* The criticality of the tokens is dynamic and highly dependent on the query vector Q.

 Example: the token ‘B’ is critical to the current query ‘is’. Thus, it has a high attention score.

However, before the final token ‘is’, ‘B’ is not critical for any previous query and has very low
attention scores.
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| Quest: Using Query-aware Sparsity in Attention

* Key ldea: preserve all KV cache, and significantly accelerate inference by reducing the memory
movement from the entire KV cache to selected constant K pages.
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| Quest: Using Query-aware Sparsity in Attention

* Qur insight is that in order not to miss critical tokens, we should select pages containing the

tokens with the highest attention weights.

* However, for an efficient selection of pages, we should calculate an approximate attention

score following this insight.

* We found that the upper bound attention weights within a page can be used to approximate

the highest attention score in the page.

When inserting new token to KV cache:
Input: Key vector K, Dimension of hidden states dim,
Current maximal vector M,;, Current minimal vector m;

for: =1 todimdo
Mi = max(M,,,, kz)
™m; = min(mi, kz)
end for

QUEST: Query-Aware Sparsity for Efficient Long-Context LLM Inference (ICML 2024)

When perform self-attention:
Input: Query vector (), Dimension of hidden states dim,
Current maximal vector M;, Current minimal vector m;

Initialize score = 0.
for: =1 todimdo

score += M AX (q; * mazx, g; *x min)
end for



| Quest Performance

Needle-in-a-Haystack

* (i) Results of 10k length passkey retrieval test on LongChat-7b-v1.5-32k.
* (i) Results of 100k length passkey retrieval test on Yarn-Llama-2-7b-128Kk.

* (Quest can achieve nearly perfect accuracy with a KV cache of 64 and 1024 tokens, which is
about 1% of the total sequence length, demonstrating that Quest can effectively preserve the
model’s ablility to handle long-dependency tasks.

Method / Budget 32 64 128 256 512

H20 0% 1% 1% 1% 3%
TOVA 0% 1% 1% 3% 8%
StreaminglLIM 1% 1% 1% 3% 3%
Quest (ours) 65% 99% 99% 99% 100%

Method / Budget 256 512 1024 2048 4096

H20 2% 2% 2% 2% 4%
TOVA 2% 2% 2% 2% 10%
StreaminglL.IM 1% 1% 1% 2% 4%
Quest (ours) 88% 92% 96% 100% 100%
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| Quest Performance
Super Long Language Modeling

* |Language modeling evaluation of Quest on PG19 dataset.
 Quest can closely match the performance of the full cache model.
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| Quest Performance
LongBench

* We evaluate LongChat-7b-v1.5-32k across a wide range of long-context datasets,

* Quest with a budget of 2k tokens can achieve comparable performance as the model with
full KV cache, while other baselines still exhibit a notable gap from full cache performance even
with a larger budget.

» Single-document QA: NarrativeQA, Qasper, MultiFieldQA; multi-document QA: HotpotQA;
summarization: GovReport; few-shot learning: TriviaQA.
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| Quest Performance
LongBench

* We evaluate LongChat-7b-v1.5-32k across a wide range of long-context datasets,

* Quest with a budget of 2k tokens can achieve comparable performance as the model with
full KV cache, while other baselines still exhibit a notable gap from full cache performance even
with a larger budget.

» Single-document QA: NarrativeQA, Qasper, MultiFieldQA; multi-document QA: HotpotQA;
summarization: GovReport; few-shot learning: TriviaQA.
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| Efficiency Evaluation

Quest attention time breakdown

* At all sequence lengths, Quest significantly outperforms Flashinfer, as the memory movement
IS reduced.

* Quest speeds up self-attention by 7.03x at sequence length 32k with token budget 2048.
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| Efficiency Evaluation

End-to-end latency

* For all sequence lengths, Quest significantly outperforms Flashinfer. Increasing the sequence
lengths only slightly changes the latency of Quest.

* Quest speedup end-to-end inference by 2.23x with sequence length 30K, token budget 2048,
4-bit weight quantization.
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| Efficiency Evaluation

Efficiency comparison with baselines

 Baselines need nearly full cache to achieve lossless performance on LongBench benchmarks.
* Therefore, Quest outperforms the baseline by up to 4.54x with the same lossless accuracy.
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| Thanks for Listening!

* We propose Quest, an efficient long-context LLM inference framework that
leverages query-aware sparsity in the KV cache to accelerate the attention mechanism.

* (Code: https://github.com/mit-han-lab/Quest
* Paper: https://github.com/mit-han-lab/Quest/blob/main/assets/quest paper.pdf

* Poster: https://github.com/mit-han-lab/Quest/blob/main/assets/quest poster.pdf
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