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e The human brain Is better described as a
Flat neural model, according to the r
Shallow Brain Hypothesis [l
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[l How deep is the brain? The shallow brain hypothesis. Mototaka Suzuki, et al. Nature Reviews 2023



However, a Flatter neural model with identical No.Neurons often
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Intuitively, if we replace those neural weights with local and global
Neuronal fields, everything becomes “prettier” and better.

Hebb's Rule (1949) describes the principle of ;
synaptic plasticity: an increase in synaptic efficacy | Feedforward through neural layers
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 Mathematically, the role of a Neuronal

field @ : RY x

* First, embedding each neuron into a

R4

R IS:

d-dimensional manifold

 Each neuron corresponds to a
d-dimensional vector ql.(t) c R

» Then, interpreting w;.x as the
process of signal transmission

between neurons.
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 How to compute the signal transmission between neurons within the Neuronal field
via a computationally efficient manner?

e Solutionl2l; we design a ruler, i.e., a metric function defined via piecewise linearities to
measure the dynamical relations between neurons
nq]
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where 4 € R are trainable coefficients, and H € N are the number of linearities required.

 Then, a neural layer with m input and n output neurons, which requires m X n trainable
parameters, now only needs d X (m + n) trainable parameters.

2l Dynamics-inspired Neuromorphic Visual Representation Learning. Z. Pei, S. Wang. CAS-/CT. ICML 2023.



* However, this Euclidean neuronal field is overly simplistic to capture
the complexity of the neuronal dynamics as in the human brain.

* Therefore, we need to upgrade the Euclidean neuronal state space to a
Riemannian one, which Is tailored for curved surfaces, much like the
convoluted surfaces of the human cerebral cortex.
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* Why use a Riemannian metric? Because...

* Unlike Euclidean metrics, a Riemannian metric can incorporate the
relationships between different dimensions.

* Thus, it can better measure the dynamical relations between neurons
and simulate their signal transmission.



 However, a Riemannian metric requires O(dz), how to simplify it...?

e Our Solution:

Step 1: design a d-dimensional displacement vector to define the
Inter-dimensional relation between neurons.

Step 2: obtain an intermediate metric vector to interpret the neuronal
dynamical relation in the Riemannian metric space.

Step 3: compute the final result via a trainable linear projection that
maps the metric vector to the Euclidean scalar space.




. Step 1: design a displacement vector dgfy) € R to define the inter-dimensional relation between
neurons x and y as follows

Vil =q,lil—qli+s], s€S

where & C {0, 1... d} are pre-defined displacement steps, e.g., § = {0, 1, 2} or & = {1, 3, 5}
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» Step 2: obtain the intermediate metric vectors between neurons x and y

M) = d{)UY e R%

where U®) € R%% s a trainable projection, and dﬂ e N' < d is the pre-
defined dimension of the Riemannian metric space.
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o Step 3: add the activated metric vectors and sum the components via a
trainable linear projection to obtain the final result

dﬂ
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where p € | % refers to the trainable projection.
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An Overall Pipeline of our Method
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* Our proposed Neural Riemannian metric is abbreviated as RieM.

* Theoretically and empirically, via RieM, we can achieve more expressive
dynamical relations with fewer dimensions of neuronal dynamics, thereby
enhancing data-free neural compression.

 The compression process is further optimized using technigues such as our
proposed Shared Correlation Counts and dynamical merging mechanism.
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Empirical Results on Vision Benchmarks

METHOD DATA-FREE SIZE (MB) W/A-BIT Topr-1 (%)
ORIGINAL X 46.83 32132 71.47
DFQ (NAGEL ET AL., 2019) Vv 8.36 6/6 66.30
UDFC (BAIET AL., 2023) Vv 8.36 6/6 72.70
RESNET-18 RIEM (OURS) Vv 8.36 8/16 71.80
DDAQ (LI ET AL., 2022C) Vv 5.58 4/4 58.44
DSG (ZHANG ET AL., 2021) X 5.58 4/4 34.33
UDFC (BAIET AL., 2023) Vv 5.58 4/4 63.49
LP-NORM (PEI & WANG, 2023) Vv 5.58 8/16 64.52
RIEM (OURS) vV 5.58 8/16 66.30
ORIGINAL X 102.53 32/32 T2
OSME (CHOUKROUN ET AL., 2019) Vv 12.28 4/32 67.36
GDFQ (XU ET AL., 2020) X 12.28 4/4 55:65
RESNET-50 SQUANT (GUO ET AL., 2022) 4 12.28 4/4 70.80
UDFC (BAIET AL., 2023) Vi 12.28 4/4 72.09
LP-NORM (PEI & WANG, 2023) 3/ 12.28 8/16 72.96
RIEM (OURS) Vv 12.28 8/16 73.26
ORIGINAL X 32.34 32/32 74.36
OMSE (CHOUKROUN ET AL., 2019) VA 6.00 4/32 64.40
DENSENET-121 UDFC (BAIET AL., 2023) Vv 6.00 4/32 70.15
LP-NORM (PEI & WANG, 2023) Vv 6.00 8/16 71.66
RIEM (OURS) Vv 6.00 8/16 73.15

» Better data-free neural compression on ImageNet-1k compared with other Quantization and

Pruning methods.

METHOD PRUNE-RATIO W-BIT Si1ZzE(MB) FLOPs (G) Topr-1 (%)
ORIGINAL 0% 32 87.32 73:27
NEURON MERGE (KIM ET AL., 2020) 10% 32 78.8 6.84 67.10
UDFC (BAIET AL., 2023) 10% 6 14.8 6.84 69.86
RESNET-34 RIEM (OURS) 10% 6 14.8 5.30 72.216
NEURON MERGE (KIM ET AL., 2020) 30% 32 61.6 5.30 39.40
UDFC (BAIET AL., 2023) 30% 6 11.6 5.30 59.25
RIEM (OURS) 30% 6 11.6 5.30 70.144
ORIGINAL 0% 32 178.81 7151
NEURON MERGE (KIM ET AL., 2020) 10% 32 154.4 3.24 72.46
UDFC (BAIET AL., 2023) 10% 6 28.8 3.24 74.69
RESNET-101 RIEM (OURS) 10% 6 28.8 2.52 76.032
i NEURON MERGE (KIM ET AL., 2020) 30% 32 112.4 2.32 38.44
UDFC (BAIET AL., 2023) 30% 6 21.2 2.52 65.76
RIEM (OURS) 30% 6 212 2.92 73.296
METHOD DATA-FREE  W-BIT SIZE (MB) AP APso AP7s APs APy AP,
DETR X 32 159.0 40.1 60.6 42.0 18.3 433 59.5
T-DETR (ZHEN ET AL., 2022) X 8 43.6 -0.6 -0.8 -04 +0.5 -0.9 -1.5
T-DETR X 4 33.4 -2.2 -2.7 -2.2 -1.0 -2.7 -3.2
QUANT-DETR Vv 8 43.6 -2.2 -1.2 -3.1 -2.5 -2.5 -1.8
SVD-DETR Vv 8 33.4 -11.5 -14.2 -12.8 -6.1 -15.1 -11.6
RIEM-DETR (OURS) Vv 8 43.6 -0.4 -06 +0.1 +04 -0.3 -1.5
RIEM-DETR (OURS) Vv 8 33.4 -0.7 -0.5 -1.2  +0.1 -1.3 -2.1
RIEM-DETR (OURS) Vv 8 26.7 -2.8 -2.5 -3.4 -2.4 -4.4 -4.1

* Improve the Parameter-efficiency on the COCO object detection benchmark compared with other

Compression methods.



A New Paradigm of Dimensionality Reduction Techniques

MATRIX SHAPE RlOOOx 1000 R5OOOX5OOO RlOOOOxlOOOO A 2
2 v 4
Teomp. | Tnaive 0.1 0.3 0.1 0.3 0.1 0.3 / e /
ISOMETRIC MAPPING 1.22E-01 1.23E-01 6.27E-02 6.28E-02 4.55E-02 4.56E-02
AUTOENCODER 4.60E-02 3.66E-02 1.57E-02 2.86E-02 4.43E-02 4.33E-02
DEEP ‘
AN CODER 3.16E-02 3.41E-02 1.35E-02 1.58E-02 9.50E-03 3.93E-02 _/
LOCALLY LE 3.16E-02 3.16E-02 1.41E-02 1.41E-02 9.98E-03 9.98E-03 W
NYSTROM 3.16E-02 3.16E-02 1.41E-02 1.41E-02 9.98E-03 9.98E-03
KERNEL PCA 1.35E-03 1.35E-03 7.70E-04 7.80E-04 7.40E-04 7.50E-04 Y v, Y,
LP-NORM 2.50E-04 1.31E-04 2.15E-05 1.65E-05 9.87E-06 7.88E-06 %
RIEM (OURS) 2.20E-04 1.20E-04 1.58E-05 1.26E-05 5.56E-06 6.27E-06 Y1 f %yg
Y2
. For avector y € R? and a matrix A € R*3, computing
* Normalized matrix-vector production error on a synthetic matrix. 2 = Ay is equivalent to transmitting signals y € R? from
+ Theratio T,,,,, /T, represents refers to the compression ratio. a set of point groups { Y, ..., ¥} to another set of point

groups {X;, ..., X,}.



Conclusion

Basically, any matrix of R within a neural structure can be converted

into a + b neurons interpreted as d-dimensional neuronal dynamics via
RieM, enabling better data-free neural compression.

Moreover, RieM-based neural representation enables better integration of
black-box neural models with solid physical interpretations.

However, RieM still require time-consuming iterative updates and are
sensitive to parameter Initialization.

Therefore, future work involves refining the computational form, reducing
the conversion time, and deriving a more accurate physics-inspired
framework to enhance neural interpretability and efficiency.
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