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• The human brain is better described as a 
Flat neural model, according to the 
Shallow Brain Hypothesis [1]. 


• Flat models have 


• Higher computational efficiency: 
parallel computing;


• Stronger interpretability: cortical 
partitioning;


• Better suitability for certain tasks: 
learning is easier for smaller dataset;

[1] How deep is the brain? The shallow brain hypothesis. Mototaka Suzuki, et al. Nature Reviews 2023



However, a Flatter neural model with identical No.Neurons often 
refers to an exponentially increasing No.Params and Complexity

the trainable neural weights becomes increasingly toublesome and “ugly."

No.Params=156 No.Params=192 No.Params=240



Intuitively, if we replace those neural weights with local and global 
Neuronal fields, everything becomes “prettier" and better.

Feedforward through neural layers  
refers to 

Wave-Propagation amongst neuronal field

Hebb's Rule (1949) describes the principle of 
synaptic plasticity: an increase in synaptic efficacy 
arises from a presynaptic cell's repeated and 
persistent stimulation of a postsynaptic cell.



• Mathematically, the role of a Neuronal 
field  is: 


• First, embedding each neuron into a 
-dimensional manifold


• Each neuron corresponds to a          
-dimensional vector 


• Then, interpreting  as the 
process of signal transmission 
between neurons.
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• How to compute the signal transmission between neurons within the Neuronal field 
via a computationally efficient manner? 


• Solution[2]: we design a ruler, i.e., a metric function defined via piecewise linearities to 
measure the dynamical relations between neurons








where  are trainable coefficients, and  are the number of linearities required.


• Then, a neural layer with  input and  output neurons, which requires  trainable 
parameters, now only needs  trainable parameters.
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[2] Dynamics-inspired Neuromorphic Visual Representation Learning. Z. Pei, S. Wang. CAS-ICT. ICML 2023.



• However, this Euclidean neuronal field is overly simplistic to capture 
the complexity of the neuronal dynamics as in the human brain. 


• Therefore, we need to upgrade the Euclidean neuronal state space to a 
Riemannian one, which is tailored for curved surfaces, much like the 
convoluted surfaces of the human cerebral cortex.

Einstein’s Brain photographed by Thomas Harvey at Princeton Hospital in 1955

The Curvature in the 
Riemannian neuronal 
state space surface 
appears to be more 
significant than the 
Depth of the neural 

structure.



• Why use a Riemannian metric? Because…


• Unlike Euclidean metrics, a Riemannian metric can incorporate the 
relationships between different dimensions.

Formally, a Riemannian metric  on a smooth manifolds  is an inner 
product  on each tangent space  of  for 
each  and





where  is the tensor product that combines two tensors to generate 
a larger tensor.

g ℳ
g : Txℳ × Txℳ ↦ ℝ Txℳ ℳ

x ∈ ℳ

g = ∑
i,j

gij dx[i] ⊗ dx[ j]

⊗

• Thus, it can better measure the dynamical relations between neurons 
and simulate their signal transmission. 



• However, a Riemannian metric requires , how to simplify it…? 


• Our Solution:  

Step 1: design a -dimensional displacement vector to define the 
inter-dimensional relation between neurons.


Step 2: obtain an intermediate metric vector to interpret the neuronal 
dynamical relation in the Riemannian metric space.


Step 3: compute the final result via a trainable linear projection that 
maps the metric vector to the Euclidean scalar space.

O(d2)

d



• Step 1: design a displacement vector  to define the inter-dimensional relation between 
neurons  and  as follows





where  are pre-defined displacement steps, e.g.,  or 

d(s)
xy ∈ ℝd

x y

d(s)
xy [i] = qx[i] − qy[i + s] , s ∈ 𝒮

𝒮 ⊆ {0, 1... d} 𝒮 = {0, 1, 2} 𝒮 = {1, 3, 5}



• Step 2: obtain the intermediate metric vectors between neurons  and 


 


where  is a trainable projection, and  is the pre-
defined dimension of the Riemannian metric space.

x y

M(s)
xy = d(s)

xyU(s) ∈ ℝdμ

U(s) ∈ ℝd×dμ dμ ∈ ℕ+ < d



• Step 3: add the activated metric vectors and sum the components via a 
trainable linear projection to obtain the final result





where  refers to the trainable projection.

g(qx, qy) =
dμ

∑
α=0

ρα ⋅ (∑
s∈𝒮

M(s)
xy )[α]

ρ ∈ ℝdμ



An Overall Pipeline of our Method



• Our proposed Neural Riemannian metric is abbreviated as RieM.


• Theoretically and empirically, via RieM, we can achieve more expressive 
dynamical relations with fewer dimensions of neuronal dynamics, thereby 
enhancing data-free neural compression.


• The compression process is further optimized using techniques such as our 
proposed Shared Correlation Counts and dynamical merging mechanism.



• Better data-free neural compression on ImageNet-1k compared with other Quantization and 
Pruning methods.


• Improve the Parameter-efficiency on the COCO object detection benchmark compared with other 
Compression methods. 

Empirical Results on Vision Benchmarks



A New Paradigm of Dimensionality Reduction Techniques

• Normalized matrix-vector production error on a synthetic matrix. 


• The ratio  represents refers to the compression ratio.Tcomp./Tnaive

• For a vector  and a matrix , computing 
 is equivalent to transmitting signals  from 

a set of point groups  to another set of point 
groups .

y ∈ ℝ3 A ∈ ℝ4×3

̂z = Ay y ∈ ℝ3

{Ỹ1, . . . , Ỹ3}
{X̃1, . . . , X̃4}



• Basically, any matrix of  within a neural structure can be converted 
into  neurons interpreted as -dimensional neuronal dynamics via 
RieM, enabling better data-free neural compression.


• Moreover, RieM-based neural representation enables better integration of 
black-box neural models with solid physical interpretations.


• However, RieM still require time-consuming iterative updates and are 
sensitive to parameter initialization.


• Therefore, future work involves refining the computational form, reducing 
the conversion time, and deriving a more accurate physics-inspired 
framework to enhance neural interpretability and efficiency.

ℝa×b
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