eCelLLM: Generalizing Large Language Models for E-commerce
from Large-scale, High-quality Instruction Data
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E-commerce has been an integral part of daily life and drawn s N -

Table 3. Overall Performance in OOD Evaluation
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Quality Control:

To ensure the accuracy and high quality of ECInstruct dataset, we
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convention in the literature;
manually inspect all processed data.

We also conduct task-specific quality control on individual tasks.
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LLMs, and the SoTA task-specific models across the 10 tasks (Table 2).

Table 2. Overall Performance in IND Evaluation

eCeLLM models show outstanding generalizability to OOD products and surpass the best
baselines with a remarkable average improvement of 9.3% in OOD evaluation (Table 3).
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