Sign Rank Limitations for Inner Product Graph Decoders
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Overview

Goal: Inner product-based decoders are among the most in-
fluential frameworks used to extract meaningful data from la-
tent embeddings. However, these decoders have shown lim-
itations in representation capacity particularly for graph re-
construction problems. Can we provide a rigorous theoretical
explanation of this phenomenon?

Contributions:

v To our knowledge, we provide the first theoretical
elucidation of why inner product decoders face additional
restrictions in graph machine learning using a modified
definition of the sign rank [1]

~ We derive straightforward modifications to circumvent this
Issue without deviating from the inner product framework,
which is simple to implement

~ We develop a variety of different strategies for proving that
a graph cannot be represented by a low-rank embedding

~ We present examples of pedagogical graph structures for
which complexifying the latent space provably permits
significantly lower dimensional latent encodings to be used

~ We design decoding architectures which drastically
expands the representation capacity of inner product
decoders that subsume the expressivity of the
aforementioned complex GNN

Problem Motivation

Observation: Entry-wise truncation or thresholding allows
for drastic matrix rank expansion for graph adjacency matri-
ces.

Figure 1. The adjacency A of the 4-dimensional 3 x 3 x 3 x 3 grid graph
shown on the left has matrix rank 62, whereas the rightmost matrix has
matrix rank 6.

Setting for Mechanistic Analysis:

Given a feature matrix X € RY*? and an adjacency matrix
A € RV*N a Graph Convolutional Network (GCN) can be uti-
lized to learn a latent mapping X — Z € RY*/, where f is
the latent dimension. Form the latent matrix Z via message
passing through the two layer network [2]:

GCN(X,A) = AReLU(AXW)W;

https.//arxiv.org/abs/2402.06662

Inference Model

Simple Variational Inference Model:
N
(2| X,A)=]]q(z|X A)
1=1

q(z:|X,A)=N (Zz' ‘Mmdi&g (0-@2)) -

Sample Decoder: For :-th row vector w; of Z, form generative
decoding model by taking inner products,

p(A1Z)=][]]r(Alz.2)

i—=1 j=1
p(Aij =11z, 2;) = 0 (2, 2;) ,

where o denotes the sigmoid.

Signh Rank & Low-Rank Classification

Definition 1: (Sign Rank) Let A € RV*Y and F' = C. Then, the
complex sign rank of A is the minimal f such that there exists
7. ¢ VX1 with columns z; satisfying

sign(A) =sign | Re | [z122...2¢| X

Fork,, ..., k, € R, let
cos(kix) sin(kix)
7 _ Cos(ffgx) sm(ffgx)  A=z7". "
cos(kyx) sin(kyx)
Then, for any rank 2 adjacency A representing a connected
graph, there exists (k, ..., k,) such that sign(A) = sign(A).
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Figure 2. Examples of rank < 2 graphs.

Motivation & Observation

Naturally follows from noting the pairwise periodic regular-
ity of the entries of A which emerges despite their perpet-
ually imbalanced periods.

Proof Sketch & Generalizations

Two Helpful Lemmas:

Let k; .= /pi where p; < py < are any sequence of
positive integer primes. There exists no ni,ny € Z such
that nit; = noty, Where ¢,,t, are periods of A;;, Ay for
{i,5} # {7, 7'}. That is, limiting the indices to the lower tri-

angular portion i > j, the periods of 4;; can never match.

Let ¢4, £ be as in Lemmma 1. Then for any € > 0, there exists
ni, Ny € Zi~( such that \nltl — n2t2| < E.

Remark: Any two distinct lower triangular entries of A may
never simultaneously take the value 1 for any x # 0, but may
become arbitrarily close.

Theorem 2

For ki, ki,... . kn, Ky € R, let

cos(kix) sin(kjz) cos(kix) cos(kjx) sin(kix)
7 _ cos(kox) sin(kix)  cos(kox) cos(kbx) sin(kox)

§ § $
cos(kyz) sin(k'yx) cos(kyx) cos(kyx) sin(kyx)
and A = ZZ'. Then for any connected rank 3 adjacency A,

~

there exists k;, k. such that sign(A) = sign(A).

Figure 3. Examples of rank < 3 graphs.

Lower Bounds for Graph Rank

Theorem 3
The real rank of an (IV — 1)-star graph is lower bounded by

(N + 1)/2. Moreover, any star graph is complex rank 1.

Idea : For graphs with node connectivity imbalance, complex
latent space is far more economical. We can synthesize ex-
amples for which compression gap is arbitrarily large!

Corollary 1

For graph G, let H be the largest induced (N — 1)-star sub-
graph. Then any faithful real latent encoding of G must pos-
sess at least [ (Ny + 1)/2| dimensions.
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Architectures

Generalization:
Slgﬂ(A) — Sigﬂ(Z1C1ZI — ZQCQZ;)

DGAE:
AReLU (AXW)W, = Z), A = sign (Z,CoZ])

m~-GAE:
A ReLU (AXW2n+1) W2n+2 — Zn
k
A= s1gn Z(—l)"C4nZnC4n+1C4n+2Zg Cints

n=0

Sample Experiments

Performance Enhancement after Intervention

(a) GAE (597)

"(h) 2GAE (8)

() Original ) GAE(8) (=) GAE (597)

Minimal Rank Embeddings of Real-World Data
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Figure 5. All molecules with more than 27, 36, 40, 60 nodes from
QM-9, Zinc, TU-Enzymes, TU-Protein datasets are treated via GAE
and DGAE, totaling 35, 118, 162, 176 graphs. GAE mostly fails for
up to 80 latent dimensions, but DGAE embeds all in < 10.
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