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Overview

Goal: Inner product-based decoders are among the most in-

fluential frameworks used to extract meaningful data from la-

tent embeddings. However, these decoders have shown lim-

itations in representation capacity particularly for graph re-

construction problems. Can we provide a rigorous theoretical

explanation of this phenomenon?

Contributions:

X To our knowledge, we provide the first theoretical

elucidation of why inner product decoders face additional

restrictions in graph machine learning using a modified

definition of the sign rank [1]

X We derive straightforward modifications to circumvent this

issue without deviating from the inner product framework,

which is simple to implement

X We develop a variety of different strategies for proving that

a graph cannot be represented by a low-rank embedding

X We present examples of pedagogical graph structures for

which complexifying the latent space provably permits

significantly lower dimensional latent encodings to be used

X We design decoding architectures which drastically

expands the representation capacity of inner product

decoders that subsume the expressivity of the

aforementioned complex GNN

Problem Motivation

Observation: Entry-wise truncation or thresholding allows

for drastic matrix rank expansion for graph adjacency matri-

ces.

Figure 1. The adjacencyA of the 4-dimensional 3 × 3 × 3 × 3 grid graph
shown on the left has matrix rank 62, whereas the rightmost matrix has
matrix rank 6.

Setting for Mechanistic Analysis:

Given a feature matrix X ∈ RN×d and an adjacency matrix

A ∈ RN×N , a Graph Convolutional Network (GCN) can be uti-

lized to learn a latent mapping X 7→ Z ∈ RN×f , where f is
the latent dimension. Form the latent matrix Z via message
passing through the two layer network [2]:

GCN(X, A) = Ã ReLU(ÃXW0)W1

Inference Model

Simple Variational Inference Model:

q(Z | X, A) =
N∏

i=1
q (zi | X, A)

q (zi |X, A) = N
(
zi

∣∣µi, diag
(
σ2

i

))
.

Sample Decoder: For i-th rowvector wi ofZ, form generative
decoding model by taking inner products,

p(A | Z) =
N∏

i=1

N∏
j=1

p (Aij |zi, zj)

p (Aij = 1 |zi, zj) = σ
(
z>

i zj

)
,

where σ denotes the sigmoid.

Sign Rank & Low-Rank Classification

Definition 1: (Sign Rank) LetA ∈ RN×N andF = C. Then, the
complex sign rank ofA is the minimal f such that there exists
Z ∈ F N×f with columns zi satisfying

sign(A) = sign
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The real sign rank is given by replacing F = R.

Theorem 1
For k1, . . . , kn ∈ R, let

Z =


cos(k1x) sin(k1x)
cos(k2x) sin(k2x)
... ...

cos(kNx) sin(kNx)

 , Ã = ZZ>. (1)

Then, for any rank 2 adjacencyA representing a connected

graph, there exists (k1, . . . , kn) such that sign(A) = sign(Ã).

Figure 2. Examples of rank ≤ 2 graphs.

Motivation & Observation
Naturally follows from noting the pairwise periodic regular-

ity of the entries of Ã which emerges despite their perpet-

ually imbalanced periods.

Proof Sketch & Generalizations

Two Helpful Lemmas:

Lemma 1
Let ki := √

pi where p1 < p2 < . . . are any sequence of
positive integer primes. There exists no n1, n2 ∈ Z6=0 such

that n1t1 = n2t2, where t1, t2 are periods of Ãij, Ãi′,j′ for

{i, j} 6= {i′, j′}. That is, limiting the indices to the lower tri-
angular portion i > j, the periods of Ãij can never match.

Lemma 2
Let t1, t2 be as in Lemma 1. Then for any ε > 0, there exists
n1, n2 ∈ Z>0 such that |n1t1 − n2t2| < ε.

Remark: Any two distinct lower triangular entries of Ã may

never simultaneously take the value 1 for any x 6= 0, but may
become arbitrarily close.

Theorem 2
For k1, k′

1, . . . , kN , k′
N ∈ R, let

Z =


cos(k1x) sin(k′

1x) cos(k1x) cos(k′
1x) sin(k1x)

cos(k2x) sin(k′
2x) cos(k2x) cos(k′

2x) sin(k2x)
... ... ...

cos(kNx) sin(k′
Nx) cos(kNx) cos(k′

Nx) sin(kNx)


and Ã = ZZ>. Then for any connected rank 3 adjacencyA,
there exists ki, k′

i such that sign(A) = sign(Ã).

Figure 3. Examples of rank ≤ 3 graphs.

Lower Bounds for Graph Rank

Theorem 3
The real rank of an (N − 1)-star graph is lower bounded by
(N + 1)/2. Moreover, any star graph is complex rank 1.

Idea : For graphs with node connectivity imbalance, complex

latent space is far more economical. We can synthesize ex-

amples for which compression gap is arbitrarily large!

Corollary 1

For graphG, letH be the largest induced (NH − 1)-star sub-
graph. Then any faithful real latent encoding ofGmust pos-
sess at least d(NH + 1)/2e dimensions.

Architectures

Generalization:

sign(A) = sign(Z1C1Z>
1 − Z2C2Z>

2 )

DGAE:

A ReLU (AXW0) W1 = Z0, Â = sign
(
Z0C0Z>

0
)

m-GAE:

A ReLU (AXW2n+1) W2n+2 = Zn

Â = sign

 k∑
n=0

(−1)nC4nZnC4n+1C4n+2Z>
n C4n+3


Sample Experiments

Performance Enhancement after Intervention

(a) GAE (597) (b) DGAE (4) (c) 2GAE (4) (d) CGAE (4)

(e) Original (f) GAE (8) (g) GAE (597) (h) 2GAE (8)

Minimal Rank Embeddings of Real-World Data

Figure 5. All molecules with more than 27, 36, 40, 60 nodes from

QM-9, Zinc, TU-Enzymes, TU-Protein datasets are treated via GAE

and DGAE, totaling 35, 118, 162, 176 graphs. GAE mostly fails for

up to 80 latent dimensions, but DGAE embeds all in ≤ 10.
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