

Optimistic Multi-Agent Policy Gradient

Wenshuai Zhao, Yi Zhao, Zhiyuan Li, Juho Kannala, Joni Pajarinen

July 2024

ICML
International Conference
On Machine Learning

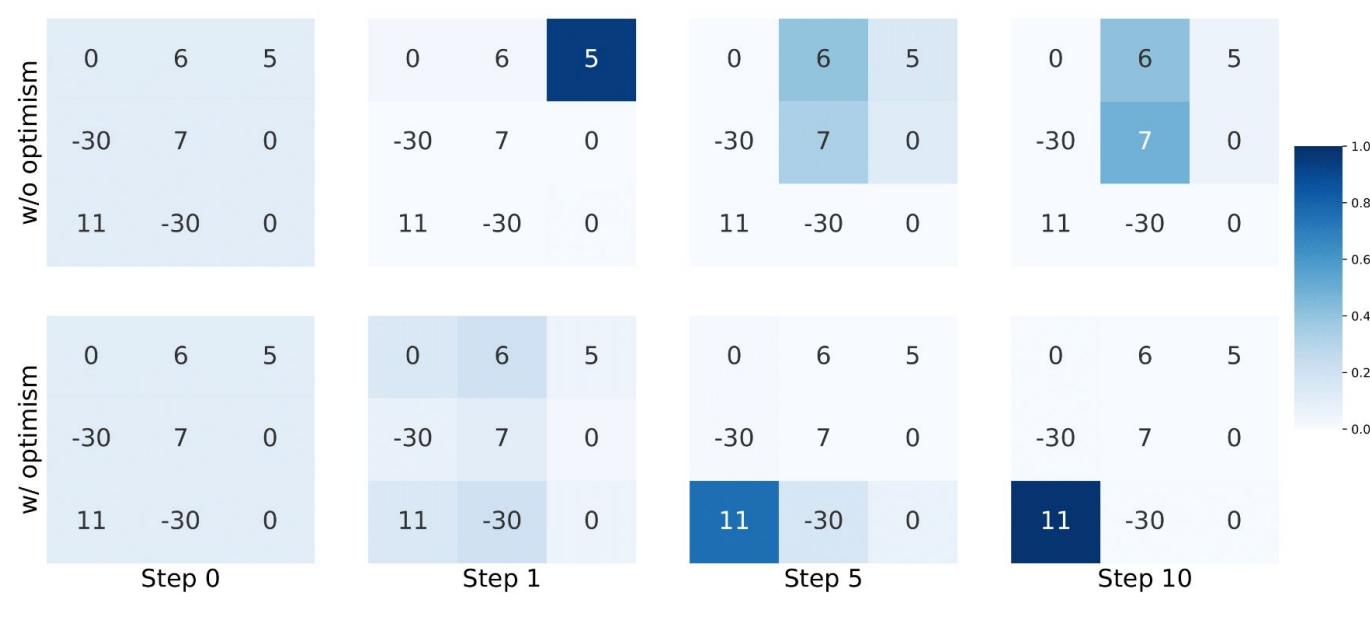
A!
Aalto University

Motivation:

- ❖ Relative Overgeneralization (RO) occurs in cooperative multi-agent learning tasks when agents converge towards a suboptimal joint policy due to overfitting to suboptimal behaviors of other agents.
- ❖ No methods have been proposed for addressing RO in multi-agent policy gradient (MAPG) methods.

$$\begin{bmatrix} 0 & 6 & 5 \\ -30 & 7 & 0 \\ 11 & -30 & 0 \end{bmatrix}$$

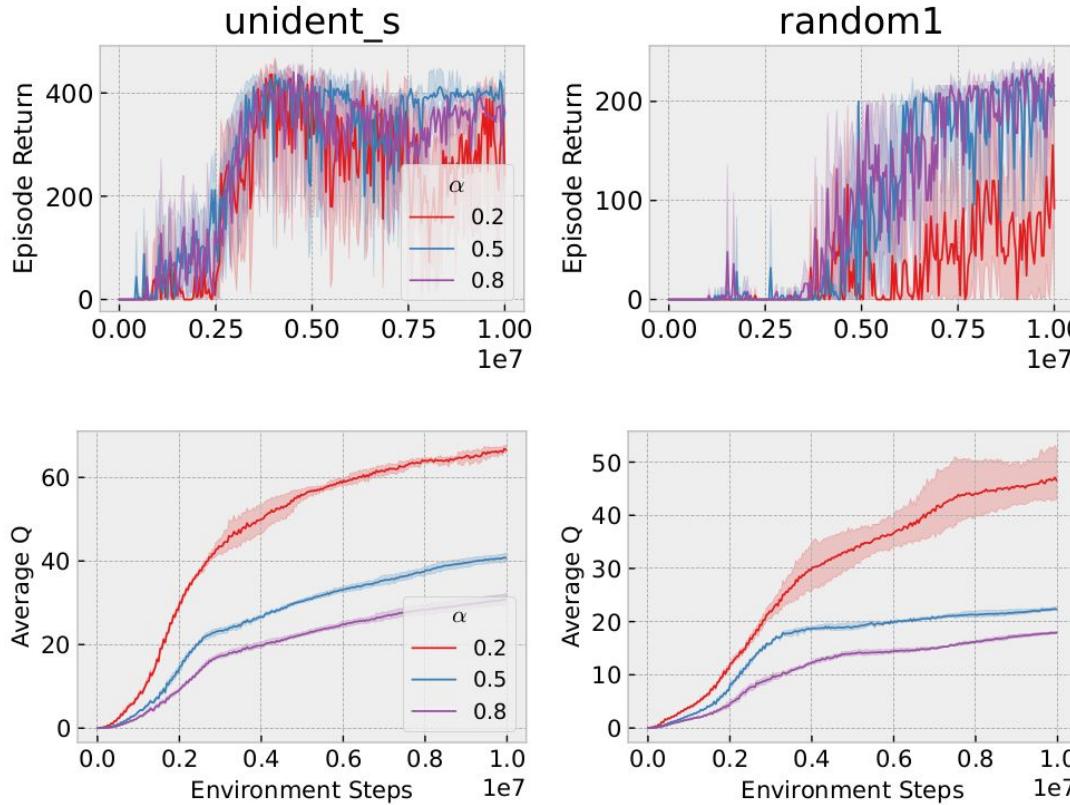
Climbing



$$\begin{bmatrix} k & 0 & 10 \\ 0 & 2 & 0 \\ 10 & 0 & k \end{bmatrix}$$

Penalty

Problem of Existing DQN-Based Optimism:



- ❖ The up row shows the episode return of hysteretic DQN with different α , while the corresponding average Q values are shown in the bottom row.
- ❖ The Q values gradually increase with increasing degree of optimism, i.e. lower α , which may degrade the performance.

Our Solution: Optimistic Policy Gradient

- ❖ Main Idea:
 - On-policy gradient methods naturally circumvent the Q-overestimation problem in DQN
 - Enable optimistic policy update by advantage clipping

$$\max_{\pi_{\theta^i}} \mathbb{E}_{(s^i, a^i) \sim \pi^i} [\min(r(\theta) \text{clip}(A(s^i, a^i), 0), \\ \text{clip}(r(\theta), 1 \pm \epsilon) \text{clip}(A(s^i, a^i), 0))]$$

Theoretical Analysis

- ❖ Analysis from Operator View:
 - The proposed optimistic policy update holds the optimal policy as a fixed point of the corresponding operators

Proposition 1. $\pi(\theta^*)$ is a fixed point of $\mathcal{I}_V^{\text{clip}} \circ \mathcal{P}_V$

Experiments Overview

- ❖ Baselines:
 - Strong MAPG methods:
 - HAPPO
 - HATRPO
 - MAPPO
 - FACMAC
 - Optimistic DQN-based methods:
 - Hysteretic DQN
 - Coordinated exploration methods
 - NA-MAPPO
 - MAVEN
 - CMAE
 - Ablation on different optimism degrees
- ❖ Benchmarks:
 - Matrix Games
 - Multi-Agent MuJoCo
 - Overcooked
 - Penalized Push-Box

Experiments: Matrix Games

Table 1. The average returns of the repeated matrix games.

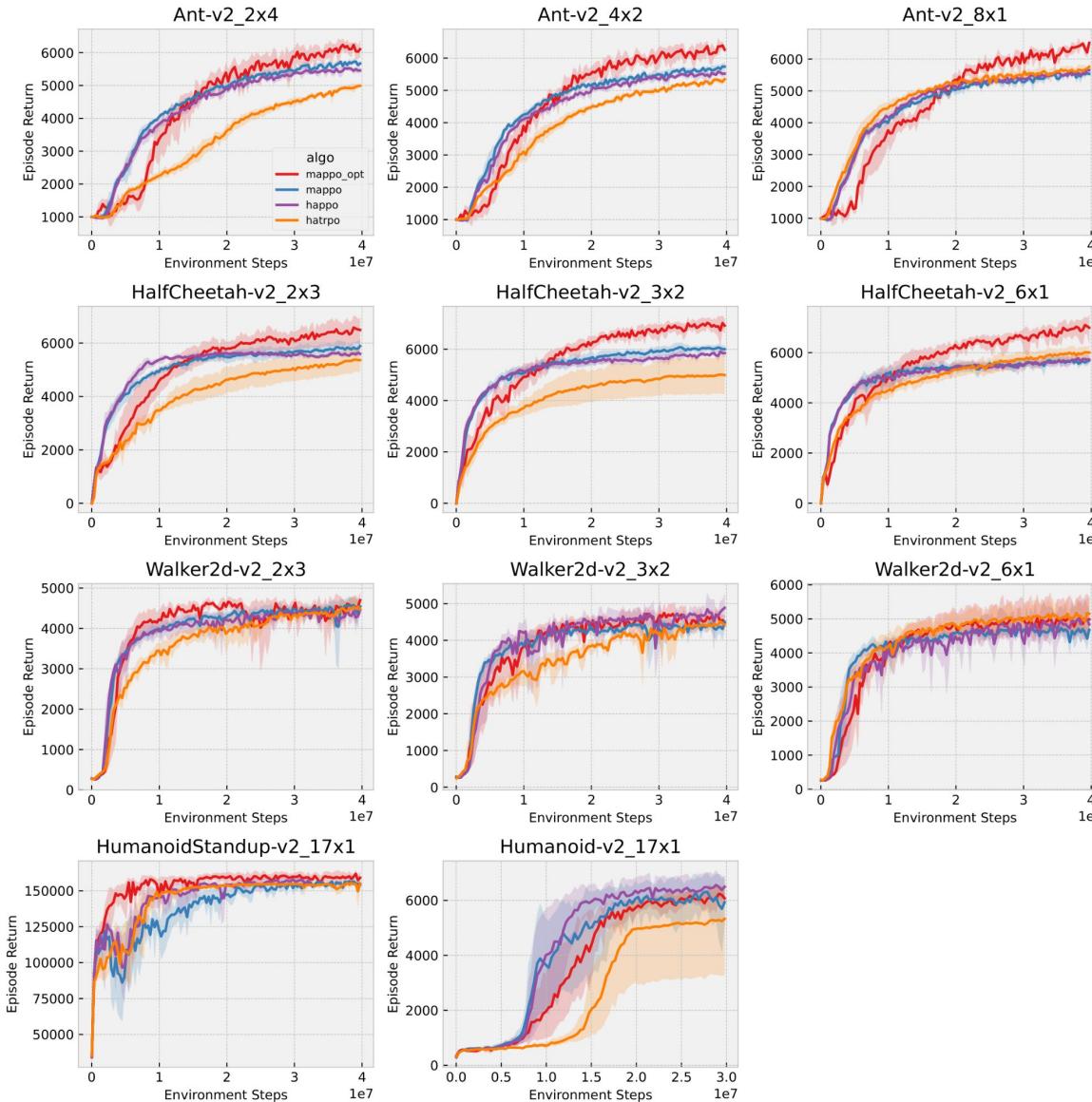
task\algo.	MAPPO	HAPPO	HATRPO	Ours
Climbing	175	175	150	275
Penalty k=0	250	250	250	250
Penalty k=-25	50	50	50	250
Penalty k=-50	50	50	50	250
Penalty k=-75	50	50	50	250
Penalty k=-100	50	50	50	250

Table 3. Performance of General Exploration Methods.

task\algo.	MAVEN	NA-MAPPO	Ours
Climbing	175	175	275
Penalty k=0	250	250	250
Penalty k=-25	50	50	250
Penalty k=-50	50	50	250
Penalty k=-75	50	50	250
Penalty k=-100	50	50	250

Both MAPG methods and coordinated exploration methods fail to solve the RO problem in matrix games.

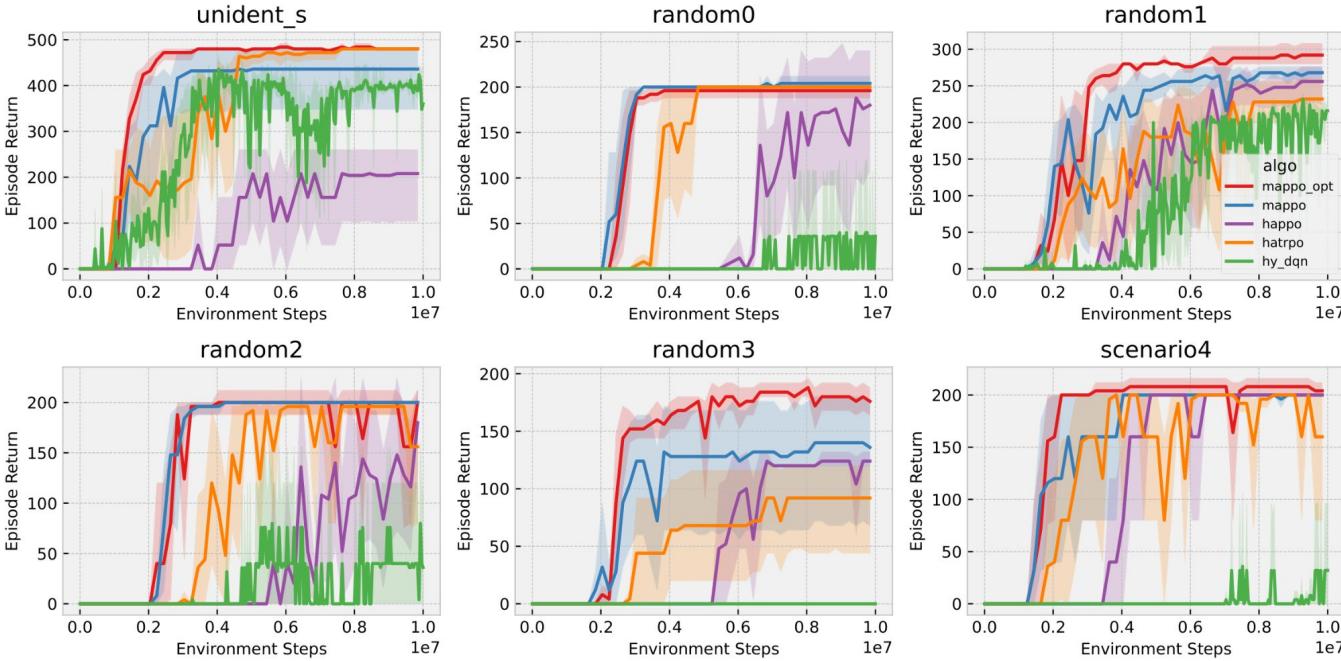
Experiments: Multi-Agent MuJoCo



Task	Algorithm	
	FACMAC (σ)	OptiMAPPO (σ)
Ant 2x4	307.58 (78.28)	6103.97 (180.62)
Ant 4x2	1922.26 (285.94)	6307.75 (114.74)
Ant 8x1	1953.04 (2276.16)	6393.07 (59.11)
Walker 2x3	713.34 (600.01)	4571.36 (262.40)
Walker 3x2	1082.23 (572.40)	4582.90 (143.01)
Walker 6x1	950.05 (542.33)	4957.02 (650.93)
HalfCh 2x3	5069.17 (2791.02)	6499.82 (573.55)
HalfCh 3x2	5379.35 (4229.25)	6887.77 (406.89)
HalfCh 6x1	3482.91 (3374.16)	6982.65 (490.35)

- ❖ The proposed OptiMAPPO consistently outperforms MAPG baselines

Experiments: Overcooked



- ❖ The proposed OptiMAPPO consistently outperforms MAPG baselines on discrete action tasks

Experiments: Penalized Push-Box and Ablation

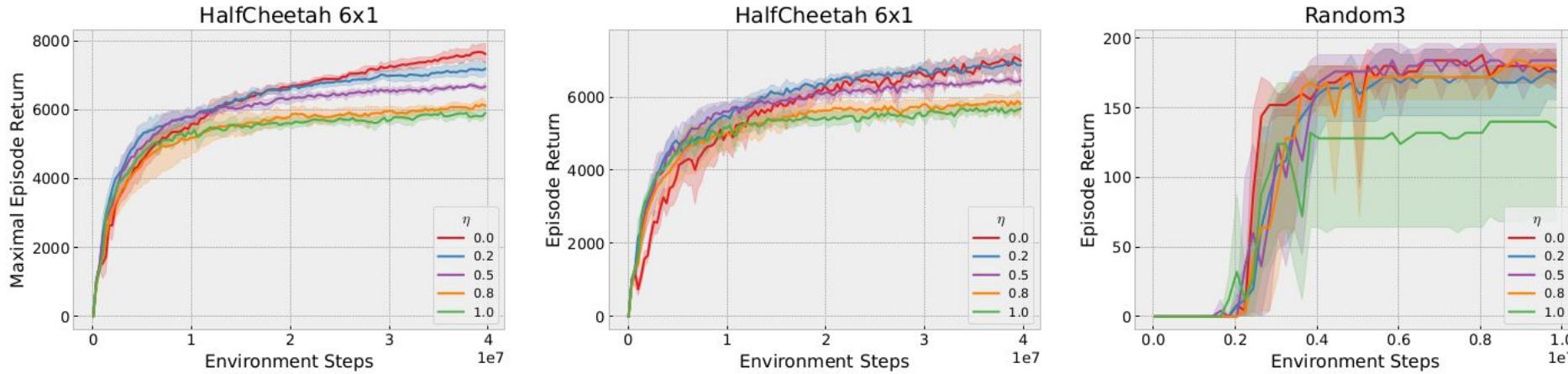


Figure 4. Ablation experiments on different degrees of optimism in OptiMAPPO. It shows that optimism helps in both tasks to a wide range of degrees. Particularly, in *HalfCheetah 6x1*, with decreasing η , i.e. increasing degree of optimism, the performance gradually improves.

Table 4. Results on *Penalized Push-Box*.

task\algo.	MAPPO	CMAE	Ours
<i>Penalized Push-Box</i>	0	1.6	1.6

Limitation and Future Work

- Although optimism helps to overcome RO problem, it can be problematic on tasks with stochastic rewards
- Future work can study how to balance the optimism and neutrality in policy update in order to mitigate the RO problem in stochastic tasks.