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Background & Motivation

Prototypical Part Network! (ProtoPNet):

e Aprototype layer on top of a CNN
base architecture

e Maintains an intuitive reasoning
structure by enforcing each
prototype to be similar to a
particular training image patch
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A key limitation of prototype based neural

networks:
Similarity score
e Learned prototypes are k . A . X . S . J
counter-intuitive and not Convolutional layers f Prototype layer g, Fully connected layer / Output logits

semantically meaningful

e E.g. Background image patches are
highly activated; multiple body parts
are highlighted by a single prototype

[1] Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K. This looks like that: deep learning for interpretable image
recognition. Advances in neural information processing systems, 32, 2019.



ICML

Reward-Reweighing, Reselecting, and
Retraining (R3) Debugging Framework

An offline and efficient concept-level
debugging? 3 framework with the
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R3-ProtoPNet ; Henslow's Sparow
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e Retrain the ProtoPNet to align the
rest of model with the updated
prototypes
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Pretrained Reward Model

Contributions:
e Shows the effectiveness of using learned reward model as a quantified metric of prototypical visual explanation
quality and model interpretability
e The proposed R3 framework empirically improves both the prototype meaningfulness and model predictive
performance

[2] Bontempelli, A., Teso, S., Tentori, K., Giunchiglia, F., and Passerini, A. Concept-level debugging of part-prototype networks, 2023
[3] Barnett, A. J., Schwartz, F. R., Tao, C., Chen, C., Ren, Y., Lo, J. Y., and Rudin, C. [aia-bl: A case-based interpretable deep learning model for
classification of mass lesions in digital mammography, 2021
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Human Data Collection & Reward Modeling

e Human preference model:

. L N Rating Rubric
r(z;, hi;) € [0,1], where h;; is the activation pattern of p; on z; such that Class(p;) = v;
. Score 5 4 3 2 1
e Data Collection:
o) ~ i Almost (e :
500 (%, h, r) tuples are sampled from a pretrained Sasrtionst | aris ME{Z’{:?::" pma:%:n m!;?é i ok
ProtoPNet Highlighted Region on the bird 500" “ahos 00 50%) (0% - 20%) (0%

o  Collected labels r are on a discrete rating scale of 1 to R0

5, given by human raters

o  Generate a comparison dataset by pairing each Examples
collected sample with one another’ 5 (eSClmstaens)
0

e Thereward model is trained with the Bradley-Terry
Model®, using the paired human preference dataset
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exp(r(z;, hz’j))

Lreward = — Z [lci oa=—11l08 (
it o g b exp(r(zi, hij)) + exp(r(zir, hirjr))

(With Adjustments)
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" exp(r(mi’hij)) +eXp(7'(xi/,hi,j/))

[4] Bontempelli, A., Teso, S., Tentori, K., Giunchiglia, F., and Passerini, A. Concept-level debugging of part-prototype networks, 2023
[5] Barnett, A.J., Schwartz, F. R., Tao, C., Chen, C., Ren, Y., Lo, J. Y., and Rudin, C. Iaia-bl: A case-based interpretable deep learning model for

classification of mass lesions in digital mammography, 2021
[6] Bradley, R. A. and Terry, M. E. Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4):324—-345,1952



R3 Debugging Steps

Reward Reweighing:
o  Used tolocally “move” the focus of a prototype
according to human preference

n

r(zi, pj
max Lreweigh(2; , Pj) = max ( iPj) ,
" " il Adistll 2} = pill; +1

D
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where z; = argmlnzépalches(f(a:l)) ”Z —P; ”27

Prototype Reselection:

o  Used to completely discard the original prototype
and reselect a new one (e.g. when the old prototype
completely focuses on the background)

o  For each suboptimal prototype, the choice between
reward reweighing and reselection is based on its
predicted reward value (a reward threshold is
empirically determined)

Retraining

o  Same as the original ProtoPNet training

o used to align the rest of the model with the updated
prototypes

ICML

Intfernational Conference
On Machine Learning

Algorithm 1 Reward Reweighed, Reselected, and Retrained
Prototypical Part Network (R3-ProtoPNet)

1: Initialize: Collect high-quality human feedback data
and train a reward model.

2: Reward Reweighing: Perform the reward-reweighed
update for the ProtoPNet, defined in Equation 1. Opti-
mize the loss function, which leads to locally maximal
solutions, improving the prototypes.

3: Prototype Reselection: Run the reselection procedure

based on a reward threshold.
If ,Tlf Zicl(p)) r(z;,p;) < a, reselect the prototype
by sampling from patch candidates and temporarily
setting the prototype to a new candidate that passes the
acceptance threshold and is unique from other current
prototypes.

4: Retraining: Retrain the model with the same loss func-
tion used in the original ProtoPNet update, to realign
the prototypes and the rest of the model.
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Experiment Results (CUB-200-2011)

Table 1. Predictive Accuracy Table 3. Average Activation Precision (AP)
BASE (my) PROTOPNET R2-PROTOPNET R3-PROTOPNET BASE (my) PROTOPNET RESELECTED REWEIGHED R3-PROTOPNET
VGG-19 (5) 76.33 +0.12 62.76 + 1.18 77.80 +0.18 VGG19 (5) 70.31 79.81 85.64 86.61
VGG-19 (10) 77.58 + 0.22 50.41 + 1.36 79.60 + 0.25 VGG19 (10) 63.12 75.95 82.72 81.62
RESNET-34 (10) 78.73+0.13 58.11 + 2.71 80.21 +0.22 RESNET-34 (10) 85.63 88.81 90.33 92.23
RESNET-50 (10) 78.52 +0.17 56.36 + 2.40 80.25 + 0.22 RESNET-50 (10) 71.45 79.29 83.69 83.52
DENSENET-121 (10) 79.64 + 0.23 54.67 + 2.29 80.42 + 0.26 DENSENET-121 (10) 66.22 81.64 86.73 89.38
DENSENET161 (10) 79.75 + 0.27 62.75 + 2.43 79.48 + 0.36 DENSENET-161 (10) 82.56 85.24 87.55 87.60
ENSEMBLE OF ABOVE ~ 82.92 + 0.09 70.46 + 0.82 84.37 +0.20 AVERAGE 73.22 81.79 86.11 86.83

* The AP metric has been used in Bontempelli et. al., 2023 [2] and Barnett et. al., 2021 [3]

Table 2. Estimated reward values

Model Accuracy —

BASE (my,) PROTOPNET RESELECTED REWEIGHED R3-PROTOPNET
VGG19 (5) 0.61 0.66 0.70 0.71 Model Interpretablity ———
VGG19 (10) 0.46 0.55 0.64 0.67
RESNET-34 (10) 0.40 0.47 0.51 0.54 [=============--> "
RESNET-50 (10) 0.36 0.45 0.50 0.54 b - m - o ! !
DENSENET-121 (10) 0.48 0.53 0.58 0.58 ' I !
DENSENET-161 (10) 0.48 0.51 0.57 0.56 F-mmmfonad ’ X
AVERAGE 0.47 0.53 0.58 0.60 ' " '
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Visualized Examples

ProtoPNet

After Reweighing and Reselection
(R2-ProtoPNet)

After Retraining (R3-ProtoPNet)

ProtoPNet
R2-ProtoPNet

R3-ProtoPNet



