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Vision-Language Models

Vision-language models, like CLIP[1], demonstrate remarkable zero-
shot classification capability for downstream tasks by calculating the
similarity between images and class names.

[1] Learning Transferable Visual Models From Natural Language Supervision. ICML 2021.



Few-Shot Prompt Tuning

This classification capability can be further enhanced through tuning
the prompt template using few labeled samples, e.g., CoOp[2],
CoCoOp[3], ProDA[4].

[2] Learning to Prompt for Vision-Language Models. IJCV. 
[3] Conditional Prompt Learning for Vision-Language Models. CVPR 2022.
[4] Prompt Distribution Learning. CVPR 2022.
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Evaluation Protocols

Existing evaluation protocols focus on separately measuring the
classification capabilities of both seen classes (base classes) and
unseen classes (new classes), as well as their harmonic mean.
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OPT Problem Setting

Open-worldPromptTuning (OPT) problem evaluates the accuracy of base-
class and new-class images together, measuring base-class, new-class, and
base-to-new discriminability at the same time. The inconsistency between H
and our metrics highlights necessity of OPT problem setting.
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DePt Framework

We decompose the original problem into two classification
problems and one OOD detection problem.

We integrate a zero-shot baseline 𝑃#$, a prompt tuning baseline 𝑃%&,
and an OOD detector 𝑃''( using the following formulation. The
main idea is to distinguish OOD samples and let zero-shot and
prompt tuning methods handle the base classes and new classes
respectively.



DePt Framework

We prove that the DePt framework can achieve better performance
compared to the zero-shot baseline, measuring their error using the
cross-entropy metric.



DePt Framework

To verify our theorem, we conducted experiments on 11 datasets
using ViT-B/16 and ViT-B/32 architectures. The experimental result
suggests that the DePt framework effectively mitigates performance
degradation on new classes through the utilization of the OOD
detector, which aligns well with our theoretical analysis.

DECOOP: Robust Prompt Tuning with Out-of-Distribution Detection

Table 1. Comparison of average performance across 11 datasets
was conducted among three approaches: ZS, PT, and our DEPT
framework, utilizing ViT-B/16 and ViT-B/32 architectures. These
results are consistent with our theoretical analysis.

METHOD
VIT-B/16 VIT-B/32

NEW ACC. ACCURACY NEW ACC. ACCURACY

ZS 65.49 63.92 63.95 60.36
PT 57.73 65.57 53.01 61.03
DEPT 68.15 68.03 65.45 62.92
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proach selects single sub-classifier to predict each test-
ing data instead of aggregating the results from all sub-
classifiers. As a result, our approach requires K times
computation for the new-class detectors compared to the
zero-shot CLIP baseline. In our experiments, we set K to
3, which does not impose a heavy computational burden.
We conduct experiments about evaluation time in Appendix
B.7, demonstating that DECOOP is relatively efficient.

4. Experiments
In this section, we conduct experiments to answer the fol-
lowing three research questions:

RQ1: Can the empirical results of the DEPT framework
on real-world datasets conform to our theoretical analysis?

RQ2: Can the DECOOP method surpass existing baseline
and SOTA methods, thereby demonstrating its robustness?

RQ3: Does the DECOOP successfully improve the base-
to-new discriminability, as designed?

4.1. Experimental Setup

Evaluation Protocol. We adopt the few-shot prompt tun-
ing setting as previously explored in studies such as (Rad-
ford et al., 2021; Zhou et al., 2022a; Wang et al., 2023b).
This setting involves partitioning the class space of each
dataset equally, with 50% of the classes designated as base
classes and the remaining 50% as new classes. Conse-
quently, for each dataset, prompts are learned for down-
stream tasks using 16 labeled samples per base class, drawn
from the training set. The efficacy of these learned prompts

Table 2. The average performance across 11 datasets using ViT-
B/16 and ViT-B/32 architectures. The best performance is in bold.

METHOD
VIT-B/16 VIT-B/32

H ACCURACY H ACCURACY

CLIP 70.84 63.92 67.13 60.36
PROMPT ENS. 71.65 65.39 67.76 60.73
COOP 72.14 65.57 67.86 61.03
COCOOP 74.72 67.67 70.77 62.96
SHIP 72.26 64.51 69.25 59.91
DECOOP(OURS) 76.13 69.69 72.51 65.75

is subsequently evaluated on the entire testing set, encom-
passing both base and new classes. In DECOOP method, we
report the Accuracy as well as previously reported H metric.
As per the definition in CoCoOp (Zhou et al., 2022a), H
metric separately evaluates the accuracy on base classes
and new classes, denoted as Accbase and Accnew. Then, H
metric is computed using their harmonic mean, defined as
H = 2⇥Accbase⇥Accnew

Accbase+Accnew
. The metric H evaluates the overall

performance of classifying both base and new classes sepa-
rately, which we refer to as base-class discriminability and
new-class discriminability. We evaluate the accuracy of the
entire class space, which includes a mix of base and new
classes, denoted as Accuracy. This metric evaluates the over-
all performance of classifying both base and new classes,
while additionally measuring base-to-new discriminability
compared to the H metric.

Datasets. Following the CoOp framework (Zhou et al.,
2022b), we conducted evaluations of our proposed DE-
COOP framework along with comparison methods on
various image classification tasks. These tasks included
general object recognition using ImageNet (Deng et al.,
2009) and Caltech-101 (Fei-Fei et al., 2007) datasets, fine-
grained object recognition involving datasets such as Ox-
ford Pets (Krause et al., 2013), Food-101 (Bossard et al.,
2014), Stanford Cars (Krause et al., 2013), Oxford Flow-
ers 102 (Nilsback & Zisserman, 2008), and FGVC Air-
craft (Maji et al., 2013). Additionally, we performed a
remote sensing recognition task using the EuroSAT (Helber
et al., 2019) dataset, a texture recognition task using the
DTD (Cimpoi et al., 2014) dataset, an action recognition
task using UCF101 (Soomro et al., 2012) dataset and a large-
scale scene understanding task using SUN397 (Xiao et al.,
2010) dataset. For each dataset, we developed a few-shot
training set for prompt tuning and employed the full testing
set to evaluate the effectiveness of the learned prompts.

Compared Methods. We compare our approach with five
existing prompt-based methods. CLIP (Radford et al., 2021)
uses a hand-crafted prompt to generate the target classifier
on the downstream task. Furthermore, we compare the
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DeCoOp Approach
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Motivated by DePt framework, we propose a Decomposed Context
Optimization (DeCoOp) approach, shown in following figure. The
main idea is to train better OOD detector ℳ( using the leave-out
strategy and train classifiersℳ) for stronger generalization for new
classes based on DePt framework.



DeCoOp Approach

We evaluate the DeCoOp approach on 11 datasets using ViT-B/16
architecture. Our DeCoOp approach demonstrates superior average
performance on both the H metric and Accuracy, showcasing its
robustness.

DECOOP: Robust Prompt Tuning with Out-of-Distribution Detection

Table 3. Performance comparison on 11 datasets using ViT-B/16 architecture. The best performance is in bold.

AVERAGE IMAGENET CALTECH101 OXFORDPETS
H ACC. H ACC. H ACC. H ACC.

CLIP 70.84 63.92 70.20 ± 0.00 66.73 ± 0.00 95.41 ± 0.00 92.90 ± 0.00 92.93 ± 0.00 88.03 ± 0.00
PROMPT ENS. 71.65 65.39 72.00 ± 0.00 68.48 ± 0.00 96.20 ± 0.00 94.08 ± 0.00 92.42 ± 0.00 86.37 ± 0.00
COOP 72.14 65.57 64.95 ± 1.11 61.79 ± 1.09 95.96 ± 0.39 93.24 ± 0.68 95.38 ± 0.33 89.61 ± 0.34
COCOOP 74.72 67.67 72.71 ± 0.33 69.41 ± 0.36 95.55 ± 0.24 93.43 ± 0.37 95.71 ± 0.76 90.24 ± 1.32
SHIP 72.26 64.51 67.29 ± 0.38 63.65 ± 0.32 95.83 ± 0.23 92.93 ± 0.37 94.44 ± 0.54 86.78 ± 1.32
DECOOP(OURS) 76.13 69.69 72.98 ± 0.04 69.62 ± 0.08 96.52 ± 0.09 94.50 ± 0.22 95.27 ± 0.08 88.87 ± 0.28

STANDFORDCARS FLOWERS102 FOOD101 FGVCAIRCRAFT
H ACC. H ACC. H ACC. H ACC.

CLIP 68.75 ± 0.00 65.39 ± 0.00 72.74 ± 0.00 67.28 ± 0.00 90.18 ± 0.00 85.40 ± 0.00 30.25 ± 0.00 23.94 ± 0.00
PROMPT ENS. 69.36 ± 0.00 65.95 ± 0.00 72.14 ± 0.00 67.03 ± 0.00 90.32 ± 0.00 85.54 ± 0.00 29.42 ± 0.00 23.31 ± 0.00
COOP 68.22 ± 0.49 63.81 ± 0.44 78.33 ± 2.26 72.11 ± 2.36 86.65 ± 1.38 80.84 ± 1.50 29.38 ± 1.78 24.80 ± 1.23
COCOOP 71.49 ± 0.62 67.75 ± 0.68 80.04 ± 1.46 71.95 ± 1.24 90.41 ± 0.24 85.61 ± 0.43 27.87 ± 11.36 21.46 ± 7.42
SHIP 69.71 ± 0.43 64.67 ± 0.55 76.85 ± 2.18 70.40 ± 2.01 86.84 ± 1.49 77.39 ± 2.19 27.13 ± 1.10 24.44 ± 0.96
DECOOP(OURS) 73.24 ± 0.15 69.64 ± 0.19 84.16 ± 0.27 78.61 ± 0.59 90.68 ± 0.09 85.83 ± 0.07 31.44 ± 0.39 25.15 ± 0.31

SUN397 DTD EUROSAT UCF101
H ACC. H ACC. H ACC. H ACC.

CLIP 72.26 ± 0.00 62.57 ± 0.00 57.32 ± 0.00 44.56 ± 0.00 58.16 ± 0.00 41.40 ± 0.00 71.00 ± 0.00 64.97 ± 0.00
PROMPT ENS. 75.04 ± 0.00 65.97 ± 0.00 59.63 ± 0.00 46.28 ± 0.00 58.45 ± 0.00 48.91 ± 0.00 73.17 ± 0.00 67.33 ± 0.00
COOP 71.37 ± 1.21 61.82 ± 1.11 57.22 ± 2.37 48.18 ± 1.78 74.33 ± 4.35 59.65 ± 5.07 71.68 ± 2.84 65.41 ± 2.18
COCOOP 77.17 ± 0.27 68.17 ± 0.33 60.59 ± 1.51 47.90 ± 1.43 73.77 ± 3.58 58.08 ± 1.49 76.59 ± 0.79 70.39 ± 1.25
SHIP 72.57 ± 0.38 60.42 ± 0.48 56.82 ± 2.18 47.58 ± 1.62 73.29 ± 2.67 54.11 ± 1.73 74.09 ± 2.09 67.24 ± 1.94
DECOOP(OURS) 78.11 ± 0.09 69.33 ± 0.05 62.72 ± 1.23 51.44 ± 1.04 74.61 ± 3.82 61.90 ± 3.72 77.67 ± 0.50 71.71 ± 0.79

PROMPT ENS. method, an ensemble technique that utilizes
multiple classifiers to enhance the performance of CLIP,
adhering to the guidelines set by CLIP. COOP (Zhou et al.,
2022b) learns a soft prompt by minimizing the classification
loss, and COCOOP (Zhou et al., 2022b) extends COOP by
further learning a lightweight neural network to generate
for each image an input-conditional token. SHIP (Wang
et al., 2023b) follows variational autoencoders to introduce
a generator that reconstructs the visual features by inputting
the synthesized prompts and the corresponding class names
to the textual encoder of CLIP.

Implementation Details. The number of tokens in each
prompt is set to 16 for DECOOP approach and comparison
methods. We train the prompts of new-class detectors for 50
epochs using the SGD optimizer and subsequently train the
prompts for sub-classifiers for 100 epochs, also using the
SGD optimizer. The learning rate lr is set to 0.002, and it
follows a cosine decay schedule. The margin � is set to 0.4
for all datasets. We use the PROMPT ENS. method as our
zero-shot baseline within the DECOOP approach. The batch
size for images is 32 across all datasets. All experiments
were conducted on Linux servers equipped with NVIDIA
A800 GPUs. We report the average results over 5 runs with
different random seed {1, 2, 3, 4, 5}.

4.2. Empirical Results

RQ1: Can the empirical results of the DEPT framework on
real-world datasets conform to our theoretical analysis?

To verify Theorem 2.1, we conducted experiments on 11
datasets using ViT-B/16 and ViT-B/32 architectures. We em-
ployed CLIP as the zero-shot baseline ZS and COOP as the
prompt tuning method PT. Subsequently, we constructed
our DEPT framework by integrating these two methods,
as presented in Equation 3. Here, the OOD detector used
in our DEPT framework directly derives from CLIP using
MSP method (Hendrycks & Gimpel, 2016). Each method
is evaluated on the entire class space Y , and the average
performance across all datasets is reported. The results
include New Acc. and Accuracy, indicating the average per-
formance of new classes and all classes, respectively. The
results presented in Table 1 consistently demonstrate that
our DEPT framework outperforms both ZS and PT methods
when evaluated using the New Acc. and Accuracy metrics.
This observation suggests that the DEPT framework effec-
tively mitigates performance degradation on new classes
through the utilization of the OOD detector, which aligns
well with our theoretical analysis.

RQ2: Can the DECOOP method surpass existing baseline
and SOTA methods, thereby demonstrating its robustness?

To assess the effectiveness of the DECOOP approach, we
conducted experiments on 11 datasets using ViT-B/16 and
ViT-B/32 architectures. The average performance across all
datasets, as well as the detailed performance on each dataset
measured by two metrics, i.e., H and Accuracy, is reported.
The results obtained using the ViT-B/16 architecture are
presented in Table 3. Our DECOOP approach demonstrates
superior average performance on both the H metric and
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DeCoOp Approach

We evaluate the base-to-new discriminability of our approach and
selected methods using the MSP method with the ViT-B/16
architecture. The results clearly indicate that our DeCoOp approach
significantly improves base-to-new discriminability, which accounts
for its SOTA performance.

DECOOP: Robust Prompt Tuning with Out-of-Distribution Detection

Table 4. The base-to-new discriminability of each method evalu-
ated using MSP method (Hendrycks & Gimpel, 2016) and AUROC
metrics. The best performance is in bold.

DATASET CLIP COCOOP SHIP DECOOP(OURS)

IMAGENET 88.34 88.05 84.71 97.48
CALTECH101 97.03 95.71 96.94 99.58
OXFORDPETS 92.66 91.15 93.30 98.12
STANFORDCARS 86.24 83.00 87.23 97.63
FLOWERS102 84.92 79.63 84.84 95.75
FOOD101 89.88 88.19 89.92 97.59
FGVCAIRCRAFT 75.08 69.00 75.78 84.06
SUN397 72.46 73.75 74.78 90.21
DTD 62.29 60.65 60.66 75.47
EUROSAT 56.40 57.74 59.32 77.78
UCF101 82.03 79.03 80.35 93.56
AVERAGE 80.67 78.72 80.71 91.57

Figure 6. The ROC curve for detecting new classes of each method
on Flowers102 and StandfordCars datasets.

Accuracy, showcasing its robustness. Regarding the detailed
performance on each dataset, our approach outperforms
the comparison methods on 10 out of 11 datasets, while
achieving comparable performance on the remaining dataset.
The detailed results using the ViT-B/32 architecture are
provided in Appendix B.1, which yield similar conclusions.

Furthermore, these results reveal a positive correlation be-
tween the H metric and Accuracy in most cases. However,
specific datasets such as FGVCAircraft (Maji et al., 2013)
show that higher H metric values do not necessarily lead
to improved Accuracy. This observation suggests that the
H metric is inadequate for measuring base-to-new discrim-
inability, emphasizing the significance of OPT problem.

RQ3: Does the DECOOP successfully improve the base-to-
new discriminability, as designed?

The DECOOP approach introduces new-class detectors with
the aim of improving base-to-new discriminability while si-
multaneously enhancing the discriminability of new classes.
We evaluate the base-to-new discriminability of our ap-
proach and selected methods using the MSP (Hendrycks
& Gimpel, 2016) method with the ViT-B/16 architecture.
Specifically, for each method, we use the maximum prob-
ability on base classes as the scores and report the AU-
ROC (Bradley, 1997) in Table 4. The results clearly indicate

Figure 7. Performance using different values of margin �.

that our DECOOP approach significantly improves base-to-
new discriminability, which accounts for its SOTA perfor-
mance. We have omitted some methods and standard devia-
tions due to space limitations. Please refer to Appendix B.2
for full results. Additionally, we present the ROC curves for
two representative datasets in Figure 6, which demonstrates
similar findings. Due to space limitations, the ROC curves
for all datasets are provided in Appendix B.3. Furthermore,
we explore the correlation between the performance of new-
class detectors and the model in Appendix B.4.

Hyperparemeter. The margin � serves as a hyperparam-
eter for learning new-class detectors in our DECOOP ap-
proach. It controls the margin in the optimization process
of the detectors, which may affect their performance. To an-
swer the robustness question of �, we conduct experiments
on six datasets. Figure 7 demonstrates the robustness of the
DECOOP approach to changes in �.

Comparison with Ensembling of COOP. In Ap-
pendix B.6, we conduct an experiment to determine if
directly combining multiple COOP prompts can lead to
performance improvement. The results demonstrate that
combining 2, 4, or 6 COOP prompts does not effectively
enhance performance and, at times, even deteriorates the
performance. This indicates that our performance gains
cannot be attributed to simple prompt ensembling.

Running Time. In Appendix B.7, we conduct an experi-
ment to compare the COOP, COCOOP, and DECOOP meth-
ods as shown in Table 9. On the EuroSAT dataset, the
runtime of DECOOP increased only slightly compared to
COOP (14.1s vs. 34.1s), but it is significantly more efficient
than COCOOP (62.0s), demonstrating the efficiency of the
DECOOP algorithm.

5. Related Work
Few-shot Prompt Tuning. Prompt learning aims to for-
malize various NLP tasks to mask language modeling prob-
lems, which is similar to the pre-training of language mod-
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Conclusions

Ø If you are interested in this paper, please feel free to
contact Zhi Zhou (zhouz@lamda.nju.edu.cn) or
visit our project homepage for more details
(https://wnjxyk.github.io/DeCoOp).

Ø This research was supported by National Science
and Technology Major Project (2022ZD0114803)
and the National Science Foundation of China
(62306133, 62176118).

• We investigate a novel OPT problem setting.
• We introduce the DePt framework, exploring the

integration of OOD detection into prompt tuning.
• We propose the DeCoOp approach to achieve state-

of-the-art performance on the OPT problem.


