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Introduction

* Subset selection finds candidate data points from a large pool,
trains model efficiently, and decreases resource consumption.

* One-shot subset selection is challenging as subset selection
is only performed once and full set data become unavailable
after selection.



Introduction

 Existing methods are classified into diversity-based and

difficulty-based subset selection.

* They do not consider the tradeoff between feature similarity
(diversity) and label variability (difficulty) as they solely rely

on the feature or label side.
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Introduction

* Recent methods (like CCS) lack principled way to balance
diversity and difficulty given a subset size. The selection also
misses some critical region in the full set.

* We propose to conduct feature similarity and label
variability Balanced One-shot Subset Selection (BOSS),
aiming to construct an optimal size-aware subset.
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Our Contribution

* Our method (BOSS) incorporates the tradeoff between
prioritizing feature similarity (diversity) or label variability
(difficulty) in relation to the subset size.

* We provide a theoretical insight via a novel core-set loss bound
that shows the importance of balancing both diversity and
difficulty with respect to the subset size.

* \We design a practical surrogate target which connects the
loss bound to a novel importance function to delicately control
the optimal balance of diversity and difficulty.

* We evaluate our method on 4 image classification datasets.



Balanced Core-set Loss Bound

* Minimization of generalization loss bounded by the full set
loss:
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Theorem 1 (Balanced Core-set Loss Bound). Given the full set )V and the subset S, for each

x; € V, we can locate a corresponding x; € S, such that ||x; — x;|| = ming, es ||xn, — X
and [(n(x;),y;) = 0. Then, we have
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with the probability of 1 — ~y, where A" and \Y are Lipschitz parameters, L is the maximum
possible loss and -y is the probability of the Hoeffding’s bound not holding true.



Bridging Label Variability and Difficulty Score

* We make a connection between the label variability and the
difficulty score:

Theorem 2 (EL2N lower bounds the label variability). Assuming a subset sample (x;,y;) € S
is located in a difficult region (e.g., near the decision boundary), where (i) the neighborhood
N is dense (||x; — x;|| < 6,,Y(x4,¥i) € N; for |N;| closest points) and (ii) the label
variability is high (p(||y; — y,;|| > 0) > &), the EL2N score produced by a smooth model (e.g.,
the initial model 1, (x;V)) will lower bound the label variability in this neighborhood N;.



Importance Sampling Function

* We leverage and difficulty score to construct a special beta
distribution.

* [t helps achieve fine-grained balance over each component.
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Importance Sampling Function

Proposition 1 (Setting a and b for desired Mode and Variance for the importance sampling
function). By setting a = 1+ D+c,|S| and b = 2+c|S|, where ¢, > ¢, > 0, the importance
function meets the following three properties:

* Pi: Mode increases with |S| and D;
* P»: Mode > D generally holds true;
* P3: Variance decreases with |S| and D under mild conditions (c, < cpb).
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Balanced Subset Selection Function

* The importance function is combined with a facility location
function:

F(S) = max Sim(x;,%x;)Z(x;,y;)
ey €5
* Optimum subset is selected using a greedy algorithm that
starts with an empty subset and keeps on adding samples to

the subset that maximizes the gain:

F((x5,y7)S) = F(SU (x5,y5)) — F(S)



Empirical Analysis

Dataset Subset Random CRAIG GradMatch Adacore LCMAT Moderate CCS BOSS(Ours)
10% 24.11 24.61 23.68 24.12 23.26 24.16 29.59 32.54
Tiny ImageNet  20% 37.67 37.76 38.20 37.94 56,71 31D 40.42 44.49
30% 45.12 44.63 44.93 44.72 44.06 45.30 47.11 51.21
50% 53.07 53.03 53.81 53.37 53.10 33.51 55.11 57.77
10% 37:35 38.67 36.68 37.65 37123 37.76 40.26 46.54
CIFAR 100 20% 51.55 51.44 53.16 52.79 53.11 50.90 55.48 61.76
30% 62.89 62.92 63.02 62.28 62.25 62.55 64.61 67.73
50% 70.67 70.69 70.68 71.19 10.53 T1:1:3 71.53 73.93
10% 70.69 70.96 72.26 72.65 71.03 72.04 74.78 78.27
CIFAR 10 20% 83.27 83.36 84.30 84.30 83.98 83.64 86.45 88.14
30% 88.89 88.98 88.47 88.37 88.54 88.46 91.49 92.14
50% 92.69 92.75 91.89 92.67 92.58 92.61 93.45 94.46
8% 84.98 84.30 84.31 8231 84.05 84.51 86.69 88.83
SVHN 12% 87.16 88.49 88.99 88.41 87.49 88.97 92.16 93.16
16% 90.47 89.92 90.42 90.34 90.16 90.35 93.87 94.51
20% 91.64 92.13 91.56 91.95 91.36 91.30 94 .38 95.15




Empirical Analysis

* Optimal values of parameters a and b
e Cutoff rate parameter B to ensure robust selection
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Conclusion

* Subset selection is an important direction to alleviate the
resource consumption

* Existing techniques do not consider the joint distribution of
diversity and difficulty

 We propose a novel strategy to balance diversity and difficulty
for a subset size.

* We provide theoretical analysis leading to an novel
importance function.

* The empirical results on real-world data show the
effectiveness of our method.



Thank You!



