Balancing Feature Similarity and Label Variability for Optimal Size-Aware One-shot Subset Selection

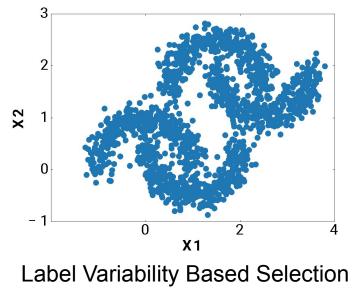
Abhinab Acharya, Dayou Yu, Qi Yu and Xumin Liu Rochester Institute of Technology

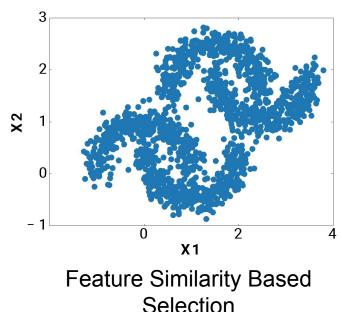
Introduction

- **Subset selection** finds candidate data points from a large pool, trains model efficiently, and decreases resource consumption.
- One-shot subset selection is challenging as subset selection is only performed once and full set data become unavailable after selection.

Introduction

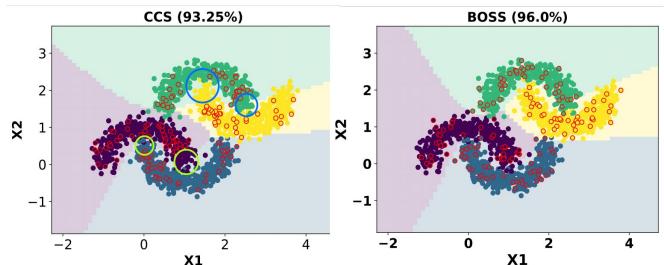
- Existing methods are classified into diversity-based and difficulty-based subset selection.
- They do not consider the tradeoff between feature similarity (diversity) and label variability (difficulty) as they solely rely on the feature or label side.





Introduction

- Recent methods (like CCS) lack principled way to balance diversity and difficulty given a subset size. The selection also misses some critical region in the full set.
- We propose to conduct feature similarity and label variability Balanced One-shot Subset Selection (BOSS), aiming to construct an optimal size-aware subset.



Our Contribution

- Our method (BOSS) incorporates the tradeoff between prioritizing feature similarity (diversity) or label variability (difficulty) in relation to the subset size.
- We provide a theoretical insight via a novel core-set loss bound that shows the importance of balancing both diversity and difficulty with respect to the subset size.
- We design a **practical surrogate target** which connects the loss bound to a **novel importance function** to delicately control the optimal balance of diversity and difficulty.
- We evaluate our method on 4 image classification datasets.

Balanced Core-set Loss Bound

 Minimization of generalization loss bounded by the full set loss:

$$\mathbb{E}_{\mathbf{x},\mathbf{y}}\left[l(\boldsymbol{\eta}(\mathbf{x}),\mathbf{y};\boldsymbol{\theta})\right] \leq \left|\mathbb{E}_{\mathbf{x},\mathbf{y}}\left[l(\boldsymbol{\eta}(\mathbf{x}),\mathbf{y};\boldsymbol{\theta})\right] - \frac{1}{|\mathcal{V}|}\sum_{i\in\mathcal{V}}l(\boldsymbol{\eta}(\mathbf{x}_i),\mathbf{y}_i;\boldsymbol{\theta}_{\mathcal{S}})\right| + \frac{1}{|\mathcal{V}|}\sum_{i\in\mathcal{V}}l(\boldsymbol{\eta}(\mathbf{x}_i),\mathbf{y}_i;\boldsymbol{\theta}_{\mathcal{S}})\right|$$

Theorem 1 (Balanced Core-set Loss Bound). *Given the full set* \mathcal{V} *and the subset* \mathcal{S} *, for each* $\mathbf{x}_i \in \mathcal{V}$ *, we can locate a corresponding* $\mathbf{x}_j \in \mathcal{S}$ *, such that* $\|\mathbf{x}_j - \mathbf{x}_i\| = \min_{\mathbf{x}_n \in \mathcal{S}} \|\mathbf{x}_n - \mathbf{x}_i\|$ and $l(\boldsymbol{\eta}(\mathbf{x}_j), \mathbf{y}_j) = 0$. Then, we have

$$\frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} l(\boldsymbol{\eta}(\mathbf{x}_i), \mathbf{y}_i, \boldsymbol{\theta}_{\mathcal{S}}) \le \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} (\lambda^{\boldsymbol{\eta}} \| \mathbf{x}_i - \mathbf{x}_j \| + \lambda^y \| \mathbf{y}_i - \mathbf{y}_j \|) + L \sqrt{\frac{\log(1/\gamma)}{2|\mathcal{V}|}}$$

with the probability of $1 - \gamma$, where λ^{η} and λ^{y} are Lipschitz parameters, L is the maximum possible loss and γ is the probability of the Hoeffding's bound not holding true.

Bridging Label Variability and Difficulty Score

• We make a connection between the label variability and the difficulty score:

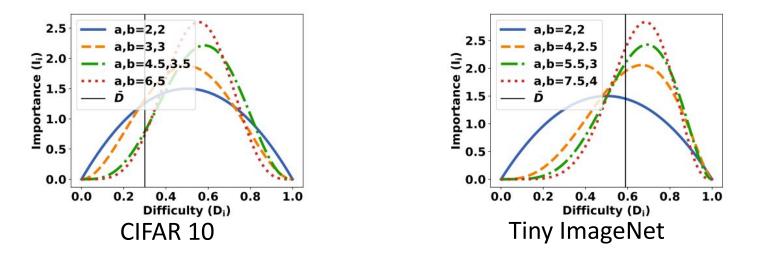
Theorem 2 (EL2N lower bounds the label variability). Assuming a subset sample $(\mathbf{x}_j, \mathbf{y}_j) \in S$ is located in a difficult region (e.g., near the decision boundary), where (i) the neighborhood \mathcal{N}_j is dense $(\|\mathbf{x}_j - \mathbf{x}_i\| \leq \delta_x, \forall (\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{N}_j$ for $|\mathcal{N}_j|$ closest points) and (ii) the label variability is high $(p(\|\mathbf{y}_i - \mathbf{y}_j\| > 0) \geq \xi)$, the EL2N score produced by a smooth model (e.g., the initial model $\eta_0(x; \mathcal{V})$) will lower bound the label variability in this neighborhood \mathcal{N}_j .

Importance Sampling Function

1

- We leverage and difficulty score to construct a special beta distribution.
- It helps achieve fine-grained balance over each component.

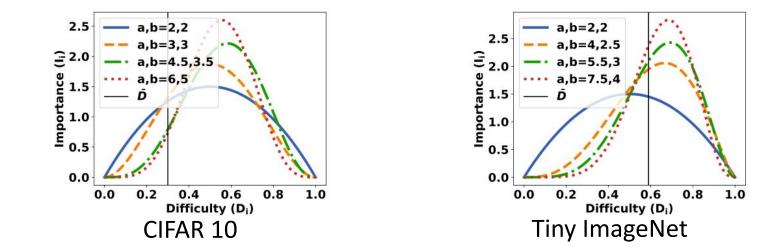
$$\mathcal{I}(\mathbf{x}_j, \mathbf{y}_j) = \text{Beta}(D_j | a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} D_j^{a-1} (1-D_j)^{b-1}$$



Importance Sampling Function

Proposition 1 (Setting *a* and *b* for desired Mode and Variance for the importance sampling function). By setting $a = 1 + \overline{D} + c_a |S|$ and $b = 2 + c_b |S|$, where $c_a > c_b > 0$, the importance function meets the following three properties:

- P_1 : Mode increases with $|\mathcal{S}|$ and \overline{D} ;
- P_2 : Mode > \overline{D} generally holds true;
- P_3 : Variance decreases with |S| and \overline{D} under mild conditions ($c_a < c_b b$).



Balanced Subset Selection Function

• The importance function is combined with a facility location function:

$$F(\mathcal{S}) = \sum_{i \in \mathcal{V}} \max_{j \in \mathcal{S}} \operatorname{Sim}(\mathbf{x}_i, \mathbf{x}_j) \mathcal{I}(\mathbf{x}_j, \mathbf{y}_j)$$

 Optimum subset is selected using a greedy algorithm that starts with an empty subset and keeps on adding samples to the subset that maximizes the gain:

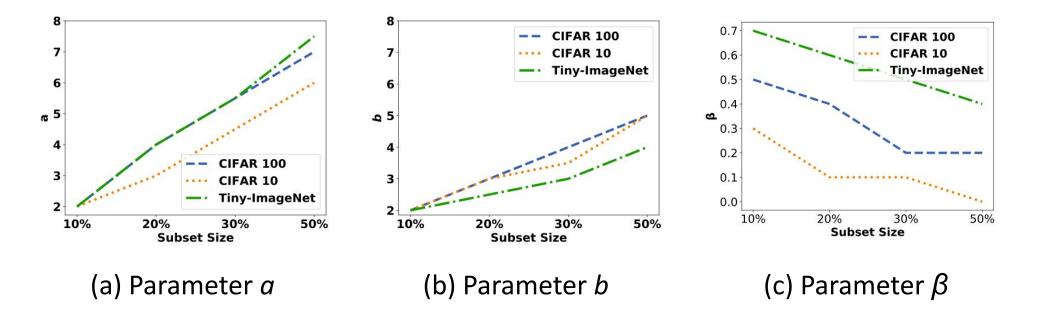
$$F((\mathbf{x}_j, \mathbf{y}_j)|\mathcal{S}) = F(\mathcal{S} \cup (\mathbf{x}_j, \mathbf{y}_j)) - F(\mathcal{S})$$

Empirical Analysis

Dataset	Subset	Random	CRAIG	GradMatch	Adacore	LCMAT	Moderate	CCS	BOSS(Ours)
	10%	24.11	24.61	23.68	24.12	23.26	24.16	29.59	32.54
Tiny ImageNet	20%	37.67	37.76	38.20	37.94	36.71	37.57	40.42	44.49
	30%	45.12	44.63	44.93	44.72	44.06	45.30	47.11	51.21
	50%	53.07	53.03	53.81	53.37	53.10	53.31	55.11	57.77
	10%	37.35	38.67	36.68	37.65	37.23	37.76	40.26	46.54
CIFAR 100	20%	51.55	51.44	53.16	52.79	53.11	50.90	55.48	61.76
	30%	62.89	62.92	63.02	62.28	62.25	62.55	64.61	67.73
	50%	70.67	70.69	70.68	71.19	70.53	71.13	71.53	73.93
CIFAR 10	10%	70.69	70.96	72.26	72.65	71.03	72.04	74.78	78.27
	20%	83.27	83.36	84.30	84.30	83.98	83.64	86.45	88.14
	30%	88.89	88.98	88.47	88.37	88.54	88.46	91.49	92.14
	50%	92.69	92.75	91.89	92.67	92.58	92.61	93.45	94.46
	8%	84.98	84.30	84.31	82.31	84.05	84.51	86.69	88.83
SVHN	12%	87.16	88.49	88.99	88.41	87.49	88.97	92.16	93.16
	16%	90.47	89.92	90.42	90.34	90.16	90.35	93.87	94.51
	20%	91.64	92.13	91.56	91.95	91.36	91.30	94.38	95.15

Empirical Analysis

- Optimal values of parameters a and b
- Cutoff rate parameter β to ensure robust selection



Conclusion

- Subset selection is an important direction to alleviate the resource consumption
- Existing techniques do not consider the joint distribution of diversity and difficulty
- We propose a novel strategy to balance diversity and difficulty for a subset size.
- We provide theoretical analysis leading to an novel importance function.
- The empirical results on real-world data show the effectiveness of our method.

Thank You!