Enabling Uncertainty Estimation
in lferative Neural Networks

Nikita Durasov :Doruk Oner - Jonathan Donier - Hieu Le :-Pascal Fua

NEURAL ol ICML
CONCEPT . === o @ W

On Machine Learning



Uncertainty Estimation

» Uncertainty estimation is well studied for classical ML, but
not so well studied for deep learning.

« Assessing the reliability of neural networks remains o
challenge, whereas several important applications rely on

It (such as robotics, autonomous driving, and medical
fields).
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Uncertainty Estimation in DL

* From a technical perspective, uncertainty estimation for o
model can be formalized as providing additional
‘confidence" in the predictions.

fo(x) = (y, o), where ¢ is prediction’s confidence

* Ensembling approaches are popular /2:2 Yot \
for deep learning uncertainty. Here, o2 ) ol 8 e
confldence is measured by the 0.41
variance in the model's predictions Y
for a given input. \’0'8;2 e RN ])
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Theoretical Justification

« Let us consider an iterative model that takes two variables
as iNputs, where the second Input represents an output
from the previous step.

Yi+1 = fo(X,¥i)

» By l[ooking at this model as a denoising autoencoder, we
can describe the iteration dynamics through the following
formula from [1].

0 log p(y;|x)
Jy;

[1] Alain, Guillaume, and Yoshua Bengio. "What regularized auto-encoders learn from the data-generating distribution.” JMLR 2014
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Theoretical Justification (Example)

» Let us consider two different inputs, for which outputs have
different distributions: with lower and higher varionce

p(y|x0) ~N(0,00) p(ylx1) ~N(0,01) 00 <01

» For these two cases, the first represents lower uncertainty
and the second higher uncertainty. The iteration formulas
are written as:

)
Yi b Y f@ (X()? Yi) E _yi/O-O Higher variance,

f@(X17Y7Z) Y X —Yz'/U%
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Low Uncertainty
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High Uncertainty

Log Probability of Gaussian Distribution
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rAULC  Corr

MC-Dropout 30.18 59.72
Deep Ensembles | 72.19  79.42
Ours 69.23 74.73

MC-Dropout 19.56  32.50
Deep Ensembles | 78.65  76.39
Ours 79.27 87.46
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Key Takeaways

- Utilizes the convergence rate / variance of successive outputs to

estimate uncertainty.

* Provides state-of-the-art uncertainty estimates with lower
compvutational cost compared to methods like Deep Ensembles.

- Does not require modifications to the original iterative model.

« Achieves high accuracy and reliable uncertainty estimates
without the need for too many forward passes or training multiple

networks.
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