Exploring Training on Heterogeneous Data with Mixture of Low-rank Adapters
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heterogeneous gradients to avoid conflicts between tasks.

» We propose MoLA-Grad and MoLA-Router, which use task
1dentifiers and the router intervened by our TwD loss respectively,
explicitly or implicitly mitigating the conflicts.

» Analysis on the training of MoLA from the perspectives of principal
component changes and eigenvalue distributions.

The main difference from the original LoRA:

» Different learning stages. LoRA is used for adapting models to downstream tasks,
while MoLA 1s used to train from scratch together with the backbone;

» Different impacts on training. LoRA can significantly amplify a small number of
eigenvalues, thereby emphasizing task-relevant eigenvectors. Instead, MoLA
significantly reduce the maximum eigenvalues to capture more heterogeneous
information, alleviating training conflicts.
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