Enhancing Vision Transformer: Amplifying Non-Linearity in Feedforward Network Module

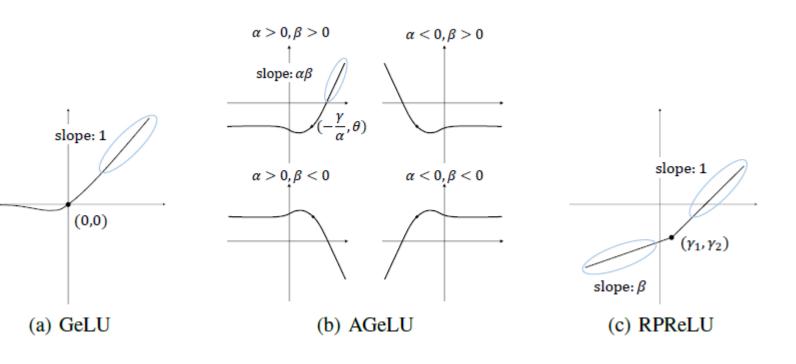
Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, Ashish Sirasao, Emad Barsoum **Advanced Micro Devices, Inc.**

Abstract

- Vision transformer contains two important components which are self-attention module and feedforward network (FFN) module
- The majority of research tends to concentrate on modifying the former while **leaving** the latter in its original form.
- Through theoretical analysis, we demonstrate that the effect of the FFN module primarily lies in **providing non-linearity**, whose degree corresponds to the hidden dimensions.
- Thus, the computational cost of the FFN module can be reduced by **enhancing the** degree of non-linearity in the nonlinear function.
- We propose an **improved FFN** (IFFN) module for vision transformers which involves the usage of the **arbitrary GeLU** (AGeLU) and integrating multiple instances of it to augment non-linearity so that the hidden dimensions can be reduced.
- A **spatial enhancement part** is involved to further enrich the non-linearity in the proposed IFFN module.
- Experimental results show that we can reduce FLOPs and parameters without compromising classification accuracy on the ImageNet dataset irrespective of how the baseline models modify their self-attention part and the overall architecture.

module is:

A more Powerful Nonlinear Function


• Arbitrary nonlinear function is defined as:

$$\phi'(x) = \beta \phi(\alpha x + \gamma) + \theta$$

• Specifically, we introduce the arbitrary GeLU (AGeLU) to our model:

$$AGeLU(x) = \beta GeLU(\alpha x + \gamma) + \theta$$

 AGeLU is more flexible than other modified nonlinear functions such as RPReLU by having learnable slope and can switch the whole shape.

- original FFN module:

= concat(AGeLU(XW^d), AGeLU'(XW^d)) W^e where $W^d = \{w_{ij}^d\} \in \mathbb{R}^{C \times \frac{C'}{2}}$ and $W^e = \{w_{ij}^e\} \in \mathbb{R}^{C' \times C}$ are weight matrices of two FC layers, and AGeLU(\cdot) and AGeLU'(\cdot) are two nonlinear functions with different parameters.

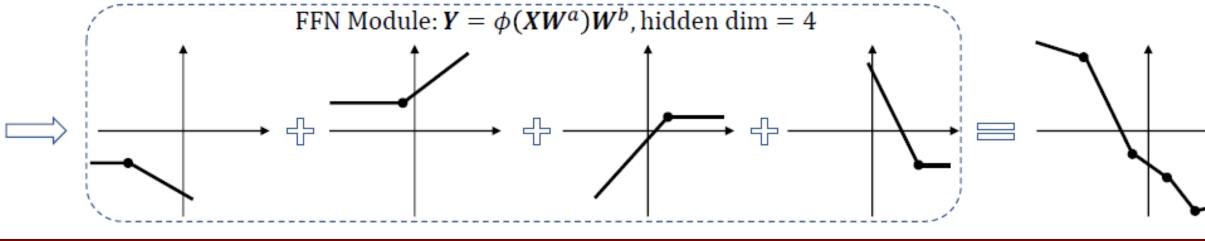
$$\mathbf{y}' = \left(\sum_{j=1}^{C'} w_{jc}^{e'} \operatorname{GeLU}(m_{cj}' x_c + n_{cj}') + \theta_j\right)_{c=1}^{C},$$

elements.

FFN Module is a Non-linearity Generator

Given an input matrix $X \in \mathbb{R}^{N \times C}$ where N is the number of patches and C is the dimension of each patch, t

$$Y = FFN(X) = \phi(XW^a)W^b$$


where $W^a = \{w_{ij}^a\} \in \mathbb{R}^{C \times C'}$ and $\phi(\cdot)$ is the non-linear function.

By representing the above equation in its element-wise form (assume N = 1 without loss of generality:

$$\boldsymbol{y} = \boldsymbol{\phi}(\boldsymbol{x}\boldsymbol{W}^{a})\boldsymbol{W}^{b} = \left(\sum_{j=1}^{C'} w_{jc}^{b} \boldsymbol{\phi}(m_{cj}\boldsymbol{x}_{c} + n_{cj})\right)_{c=1}^{C},$$

where $m_{cj} = w_{cj}^a$ and $n_{cj} = \sum_{i=1, i \neq c}^{C} w_{ij}^a x_i$, we can derive the following corollary:

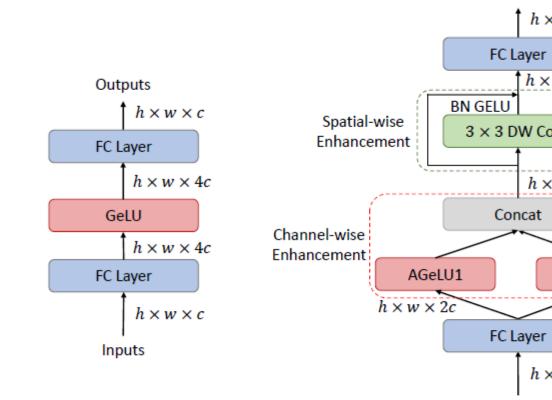
Each element y_c in y is the linear combination of C' different nonlinear functions to the input element x_c . Distinct scales and biases are applied to different input elements x_c before passing through the nonlinear functi The scale is a learnable weight independent to the input element x_c , while the bias is dependent to all other in

IFFN Module

Channel-wise Enhancement Part

• We integrate two AGeLU functions and form a powerful nonlinear function to replace the original GeLU and halve the hidden dimension of the

$$Y' = AFFN(X)$$


• Represent the above equation into its element-wise form:

• Compared to FFN module, AFFN module can generate the same degree of non-linearity. Each element y'_c in y' can also be treated as a linear combination of C' different nonlinear functions to the input element x_c

with distinct scales and biases. Each scale is a learnable weight independent to the input while each bias is dependent on other input

Spatial-wise Enhancement Part and Overall A

Channel-wise enhancement part extend non-lin the channel dimension. Thus ,we further linearity with spatial dimension. We modify AFI introducing a DW Block (DW Conv with BN an AGeLU, and form the final improved FFN (IFFN)

(a) Original FFN Module

(b) IFFN Module (ours)

 $h \times w \times 4c$

 $h \times w \times c$

AGeLU2

AMDJ

			Experime	nts			
the output of FFN	Table 1: Image Classification results on ImageNet-1k dataset.						
	Methods	Architecture	Parameters (M)	FLOPs (G)	Top-1 Accu		
		DeiT-Ti	5.72	1.26	72.2		
	DeiT	+ IFFN	5.00 (-12.6%)	1.10 (-12.7%)	72.6		
		DeiT-S	22.05	4.60	79.9		
		+ IFFN	18.84 (-14.6%)	3.93 (-14.6%)	80.0		
		DeiT-B	86.57	17.57	81.8		
		+ IFFN*	73.66 (-14.9%)	14.92 (-15.1%)	81.8		
		Swin-Ti	28.29	4.50	81.2		
tion $\phi(\cdot)$.		+ IFFN	24.29 (-14.1%)	3.88 (-13.8%)	81.5		
	Swin	Swin-S	49.61	8.75	83.2		
nput elements in x .	Swin	+ IFFN	42.40 (-14.5%)	7.49 (-14.4%)	83.2		
		Swin-B	87.77	15.44	83.5		
		+ IFFN*	75.45 (-14.0%)	13.34 (-13.6%)	83.4		
у _с		PoolFormer-S12	11.92	1.82	77.2		
		+ IFFN	9.80 (-17.8%)	1.48 (-18.7%)	77.2		
		PoolFormer-S24	21.39	3.40	80.3		
		+ IFFN	17.15 (-19.8%)	2.72 (-20.0%)	80.7		
	DeclEerman	PoolFormer-S36	30.86	4.99	81.4		
	PoolFormer	+ IFFN	24.50 (-20.6%)	3.97 (-20.4%)	81.5		
		PoolFormer-M36	56.17	8.78	82.1		
Architecture		+ IFFN	44.19 (-21.3%)	6.93 (-21.1%)	82.1		
inearity through		PoolFormer-M48	73.47	11.56	82.5		
enhance non-		+ IFFN*	58.62 (-20.2%)	9.46 (-18.2%)	82.3		
FFN module by		LVT-R1	5.52	0.76	73.9		
and GeLU) after		+ IFFN*	4.98 (-9.8%)	0.68 (-10.5%)	74.0		
/		LVT-R2	5.52	0.84	74.8		
N) module.	Dortable ViT	+ IFFN*	4.98 (-9.8%)	0.76 (-9.5%)	74.6		
puts	Portable ViT	LVT-R3	5.52	0.92	74.6		
$h \times w \times c$		+ IFFN*	4.98 (-9.8%)	0.84 (-8.7%)	74.8		
layer $h \times w \times 4c$		LVT-R4	5.52	1.00	74.9		
		+ IFFN*	4.98 (-9.8%)	0.92 (-8.0%)	74.9		
OW Conv					- -		

Table 2: Ablations on channel- and spatial-wise
enhancement part.

Table 3: Using different kernel size in spatial-wise enhancement part.

2	Methods	Parameters (M)	FLOPs (G)	Top-1 Accuracy (%)	n	Parameters (M)	FLOPs (G)	Top-1 Acc (%)
$w \times 2c$	DeiT-Ti	5.72	1.26	72.2	1	4.92	1.08	72.0
	w/ channel	4.89	1.08	70.5	3	5.00	1.10	72.6
	w/ spatial	5.83	1.28	72.8	5	5.15	1.13	72.8
	w/ channel & spatial	5.00	1.10	72.6	7	5.37	1.17	72.9

curacy ((%)
2.2	
2.6	
.9	
).0	
.8	
.8	
.2	
.5	
.2	
.2	
5.5	
5.4	
.2	
.2	
).3	
).7	
.4	
5 2.1	
2.1	
2.1 2.5	
2.3	
.9	
.0	
.8	
.6	
.6	
.8	
.9	
.9	