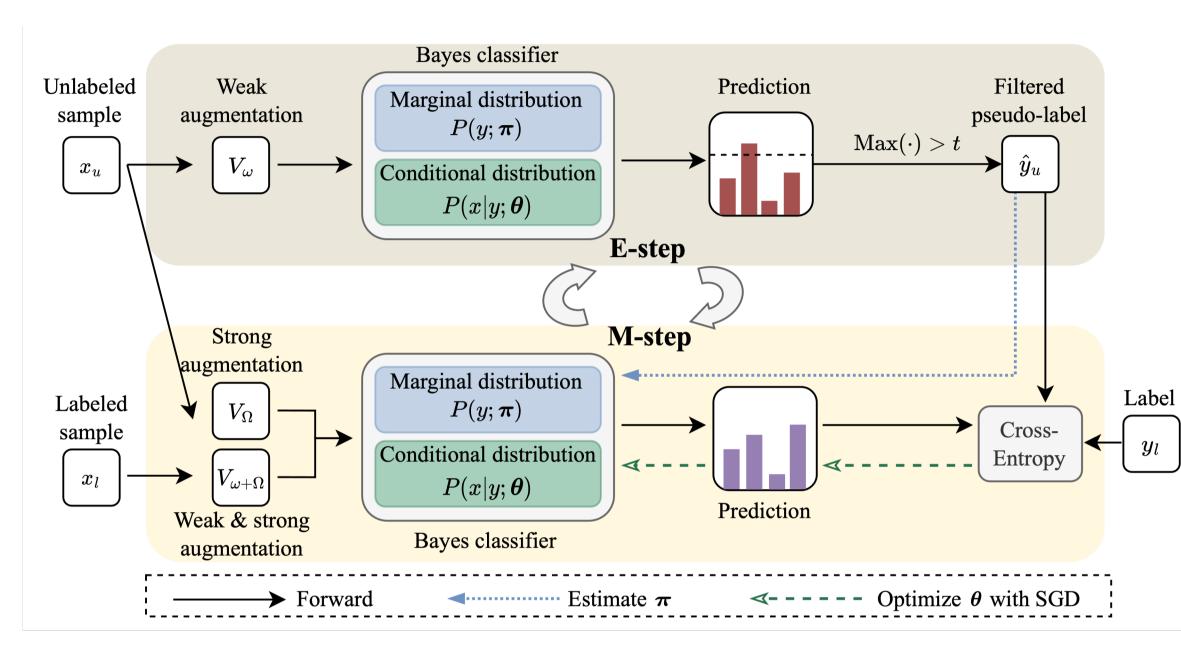


SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Chaoqun Du*, Yizeng Han*, Gao Huang[∖] **Semi-Supervised Learning** Tsinghua University. *Equal contribution. Corresponding author.

Background



Key idea

Class distribution is a powerful statistic for mastering long-tailed learning.

Estimate & exploit it!

Method

Theoretical analysis

Probabilistic model.

 $P(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\pi}) = P(\boldsymbol{y} | \boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\pi}) P(\boldsymbol{x}).$

E-step (expected complete data log-likelihood). $\mathcal{Q}(oldsymbol{ heta},oldsymbol{\pi};oldsymbol{ heta}',oldsymbol{\pi}')=\mathbb{E}_{oldsymbol{y}|oldsymbol{x};oldsymbol{ heta}',oldsymbol{\pi}}$ $=\sum \log P$ + $\sum P(y|x_j; \theta', \pi') \log P(y|x_j; \theta, \pi_u).$

M-step (optimizing θ and π). Optimal π that maximizes $Q(\theta, \pi; \theta', \pi')$.

$$oldsymbol{\hat{\pi}}_l = rac{1}{N} \sum_{i=1}^N y_i, \quad oldsymbol{\hat{\pi}}_u = rac{1}{M}$$

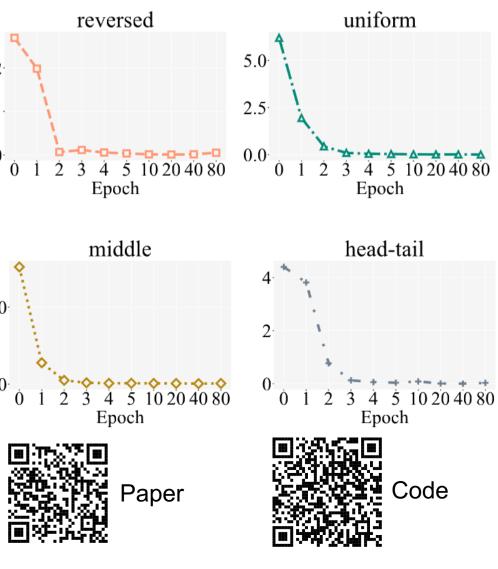
$$egin{aligned} &\pi_{i}\left[\log P(oldsymbol{y},oldsymbol{x};oldsymbol{ heta},oldsymbol{\pi})
ight] \ &P(y_{i}|x_{i};oldsymbol{ heta},oldsymbol{\pi}_{l}) \end{aligned}$$

 $\sum_{j=1}^{M} P(y|x_j; \boldsymbol{\theta}', \boldsymbol{\pi}').$

Objectives for optimizing θ . $\mathcal{L}_{l} = -\frac{1}{B} \sum_{i=1}^{B} \log \frac{\exp(f_{\theta}(x_{i}, y_{i}))}{\sum_{y'} \phi_{y'}^{\tau} \exp(f_{\theta}(x_{i}, y'))}$ i = 1 $\downarrow \mu B$

$$\mathcal{L}_u = -\frac{1}{\mu B} \sum_{j=1}^{t} \mathbb{I}(\max_y(q_y)) \ge t) \sum_y q_y \log p_y.$$

Optimal Φ for learning a Bayes classifier.


$$\hat{\boldsymbol{\phi}} = [\hat{\phi}_1, \hat{\phi}_2, \cdots, \hat{\phi}_K]$$
$$= \frac{1}{N+M} (\sum_i y_i + \sum_j P(y|x_j; \boldsymbol{\theta}', \boldsymbol{\pi}')).$$

The Bayes classifier for unlabeled or test data.

$$P(y|x;\boldsymbol{\theta};\boldsymbol{\hat{\pi}}) = \frac{P(y;\boldsymbol{\hat{\pi}})\exp(f_{\boldsymbol{\theta}}(x,y))}{\sum_{y'}P(y';\boldsymbol{\hat{\pi}})\exp(f_{\boldsymbol{\theta}}(x,y'))},$$

or
$$P(y|x;\boldsymbol{\theta}) = \frac{\exp(f_{\boldsymbol{\theta}}(x,y))}{\sum_{y'}\exp(f_{\boldsymbol{\theta}}(x,y'))}.$$

Experiments

ImageNet-127				
Fiz	FixMatch (Sohn e			
	w/ DARP <u>(Kim e</u>			
	/ CReST + (We)			
w/ CoSSL (Fan e				
w/ ACR <u>(Wei &</u>				
w/ SimPro				
Im	ageNet-127			
	Match <u>(Sohn e</u>			
	/ ACR [†] (Wei &			
W	/ ACR (Wei &			
w/ SimPro				
ImageNet-1k				
FixMatch (Sohn e				
w/ ACR [†] (Wei &				
w/ ACR (Wei &				
W	/ ACR (Wei &			
	// ACR <u>(Wei &</u> // SimPro			
	/ SimPro			
	/ SimPro			
w	/ SimPro			
w	/ SimPro Quality			
w	2. V/ SimPro Quality revers			
w	/ SimPro Quality			
	2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2			
w	2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2			
w	/ SimPro Quality revers			
e KL Distance	2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2			
e KL Distance	/ SimPro Quality revers			
w	// SimPro Quality revers 2. 1. 0. 0 1 2 3 4 5 Epocl midd			
e KL Distance	// SimPro Quality revers 2 1 0 0 1 2 3 4 5 Epocl midd			
e KL Distance	// SimPro Quality revers 2. 1. 0. 0 1 2 3 4 5 Epocl midd			

	$\gamma_t \approx 286$		
	32×32	64×64	
et al., 2020)	29.7	42.3	
et al., 2020)	30.5	42.5	
i et al., 2021)	32.5	44.7	
et al., 2022)	43.7	53.9	
Gan, 2023)	57.2	63.6	
	59.1	67.0	
	$\gamma_t = 1$		
et al., 2020)	38.7	46.7	
c Gan, 2023)	49.5	56.1	
Gan, 2023)	50.6	57.3	
	55.7	63.8	
	$\gamma_t = 1$		
et al., 2020)	_	_	
c Gan, 2023)	13.2	23.4	
Gan, 2023)	13.8	23.3	
	19.7	25.0	

of estimation