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I - Problem
• f : probability density on [0, 1]d.

• Inputs : samples X1, . . . , Xn
i.i.d.∼ Pf

• Desired output : Private estimator
f̂ of f .

II - Concentrated DP [1, 2, 3]
• Neighboring relation : (X1, . . . , Xn) ∼
(X ′

1, . . . , X
′
n′) iff (X1, . . . , Xn) can be ob-

tained from (X ′
1, . . . , X

′
n′) with a permu-

tation and a replacement.

• Definition :
X = (X1, . . . , Xn) ∼ Y =
(X1, . . . , Xn−1, X

′
n) =⇒

∀1 < α < +∞ : Dα (A(X)∥A(Y)) ≤ ρα,

Dα (P∥Q) := 1
α−1 log

∫ (
dP
dQ

)α−1

dQ

• Composition : If A1, . . . , Ak are ρ-
zCDP, (A1, . . . , Ak) is kρ-zCDP.

• Gaussian mechanism : It is possible
to privatize queries by adding Gaussian
noise.

A(X1, . . . , Xn) A(X ′
1, . . . , X

′
n)

Output Space

III - Contributions [4, 5, 6]
• Adaptive : Optimal even without prior

knowledge on the target smoothness.

• Non-integer smoothness : Allows
for finer-grained modeling than previous
work.

• High(ish) dimension : Generalizes to
arbitrary dimension (but suffers from the
curse of dimensionality).

IV - β-Smoothness
∑

|α|=⌊β⌋

∥∂αf∥22

+ 1β−⌊β⌋>0

∑
|α|=⌊β⌋

∥∂αf∥2Hβ−⌊β⌋
≤ L

I - Problem (Visual)

V - Private Projection Estimators [8, 4]

Sample Space

R

f

f =
∑

k θk︸︷︷︸
F. Co.

ϕk =
∑

k≤M θkϕk + Bias

θ̂k = 1
n

∑n
j=1 ϕ̄k(Xj) + Privacy Noise

Unbiased with Variance

L.L.N.

VI - Minimax Rate & Adaptivity
The minimax rate of extimation for the problem is

Θ
(
max

{
n− 2β

2β+d , (n
√
ρ)−

2β
β+d )

})
.

• The privacy parameter ρ : ρ ≳ n− 2β
2β+d , privacy comes at a negligible cost on the estimation.

ρ ≪ n− 2β
2β+d the utility can be arbitrarily degraded by making ρ arbitrarily small.

• The smoothness β : The higher β, the smaller the cut-off rate n− 2β
2β+d .

• The dimensionality d : Relative curse of dimensionality (can be balanced by smoothness).

• Adaptivity : It is possible to make the estimation adaptive (i.e. without prior knowledge of
β) by adapting Lepskii’s method [7].

VII - Experimental Results
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