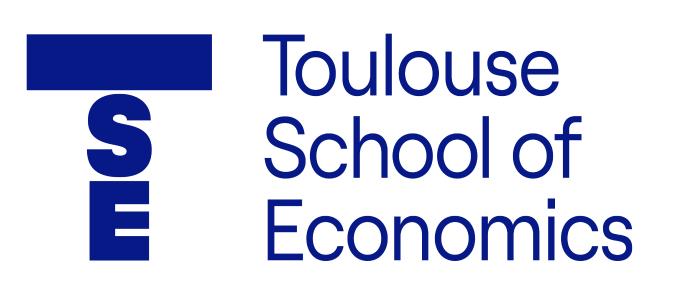


Privately Learning Smooth Distributions on the Hypercube by Projections



Clément Lalanne, Sébastien Gadat Toulouse School of Economics, Toulouse 1 University, France

I - Problem (Visual)

0.0

0.2

0.4

0.6

I - Problem

- f: probability density on $[0,1]^d$.
- Inputs: samples $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathbb{P}_f$
- Desired output : Private estimator \hat{f} of f.

II - Concentrated DP [1, 2, 3]

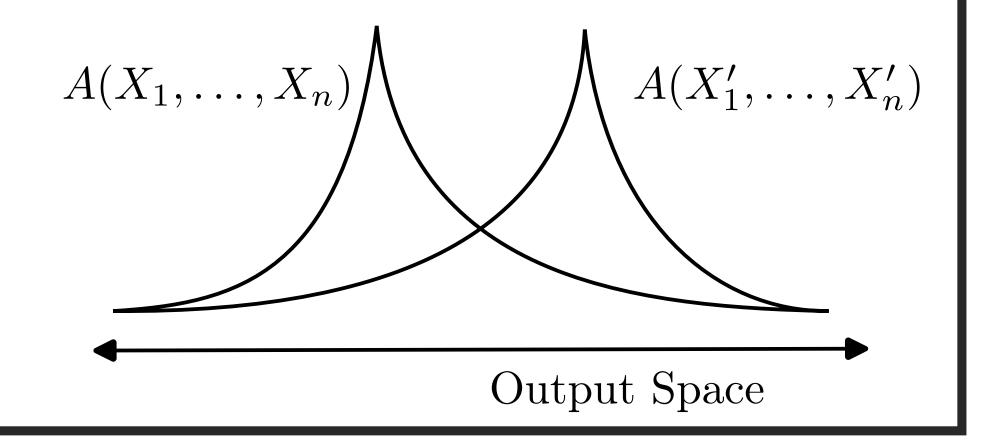
- Neighboring relation: $(X_1, \ldots, X_n) \sim (X'_1, \ldots, X'_{n'})$ iff (X_1, \ldots, X_n) can be obtained from $(X'_1, \ldots, X'_{n'})$ with a permutation and a replacement.
- Definition :

$$\mathbf{X} = (X_1, \dots, X_n) \sim \mathbf{Y} = (X_1, \dots, X_{n-1}, X'_n) \Longrightarrow$$

$$\forall 1 < \alpha < +\infty : D_{\alpha} (A(\mathbf{X}) || A(\mathbf{Y})) \leq \rho \alpha,$$

$$D_{\alpha} (\mathbb{P} || \mathbb{Q}) := \frac{1}{\alpha - 1} \log \int \left(\frac{d\mathbb{P}}{d\mathbb{Q}}\right)^{\alpha - 1} d\mathbb{Q}$$

- Composition: If $A_1, ..., A_k$ are ρ -zCDP, $(A_1, ..., A_k)$ is $k\rho$ -zCDP.
- Gaussian mechanism: It is possible to privatize queries by adding Gaussian noise.



III - Contributions [4, 5, 6]

- Adaptive: Optimal even without prior knowledge on the target smoothness.
- Non-integer smoothness: Allows for finer-grained modeling than previous work.
- **High(ish) dimension:** Generalizes to arbitrary dimension (but suffers from the curse of dimensionality).

| IV - β -Smoothness

$$\sum_{|\alpha|=\lfloor\beta\rfloor} \|\partial^{\alpha} f\|_{2}^{2} + \mathbf{1}_{\beta-\lfloor\beta\rfloor>0} \sum_{|\alpha|=\lfloor\beta\rfloor} \|\partial^{\alpha} f\|_{\mathcal{H}_{\beta-\lfloor\beta\rfloor}}^{2} \leq L$$

VIII - References

- [1] Cynthia Dwork and Guy Rothblum: Concentrated differential privacy (2016)
- [2] Cynthia Dwork, Frank McSherry, Kobbi Nissim and Adam D. Smith: Calibrating Noise to Sensitivity in Private Data Analysis, TCC (2006)
- [3] Mark Bun and Thomas Steinke: Concentrated differential privacy: Simplifications, extensions, and lower bounds, Theory of Cryptography (2016)
- [4] Larry Wasserman and Shuheng Zhou: A statistical framework for differential privacy, Journal of the Ameri- can Statistical Association (2010)
- [5] Rina Foygel Barber and John C. Duchi: Privacy and statistical risk: Formalisms and minimax bounds (2014)
- [6] Lalanne Clément, Aurélien Garivier and Rémi Gribonval: About the cost of central privacy in density estimation, Transactions on Machine Learning Research (2023)
- [7] Oleg V. Lepskii: On a problem of adaptive estimation in gaussian white noise, Theory of Probability and Its Applications (1991)
- [8] Alexandre B. Tsybakov: Introduction to Nonparametric Estimation, Springer series in statistic (2009)

0.0

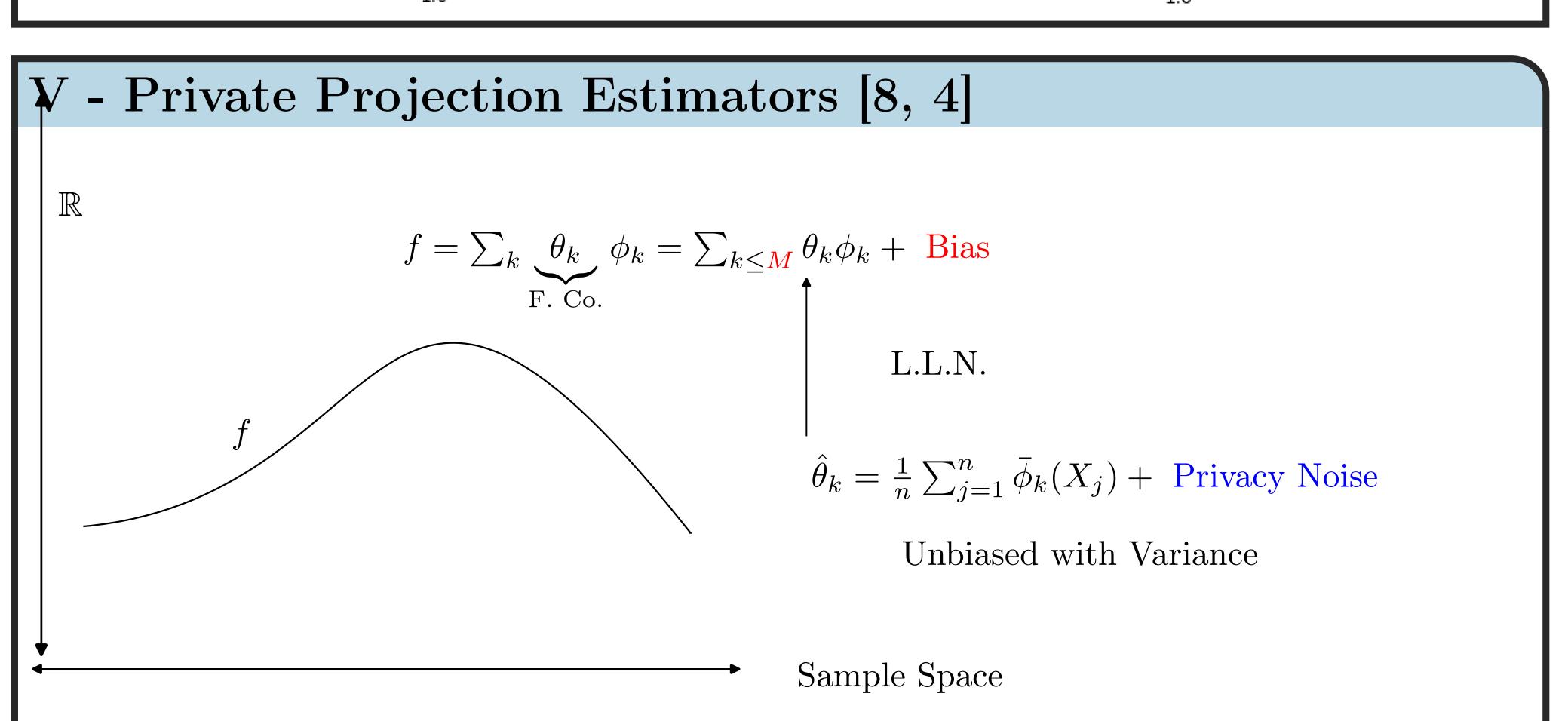
0.2

0.4

10,112

0.6

0.8



VI - Minimax Rate & Adaptivity

The minimax rate of extimation for the problem is

$$\Theta\left(\max\left\{n^{-\frac{2\beta}{2\beta+d}},\left(n\sqrt{\rho}\right)^{-\frac{2\beta}{\beta+d}}\right)\right)$$
.

- The privacy parameter $\rho: \rho \gtrsim n^{-\frac{2\beta}{2\beta+d}}$, privacy comes at a negligible cost on the estimation. $\rho \ll n^{-\frac{2\beta}{2\beta+d}}$ the utility can be arbitrarily degraded by making ρ arbitrarily small.
- The smoothness β : The higher β , the smaller the cut-off rate $n^{-\frac{2\beta}{2\beta+d}}$.
- The dimensionality d: Relative curse of dimensionality (can be balanced by smoothness).
- Adaptivity: It is possible to make the estimation adaptive (i.e. without prior knowledge of β) by adapting Lepskii's method [7].

