

Differentially Private Representation Learning via Image Captioning

AUTHORS

AFFILIATIONS (1) Meta (3) BAIR, UC Berkeley * Equal Contribution

arXiv

Model	pretraining data	DP?	ImageNet-1K	Places-365	Places-205	iNat-2021
DP-NFNet	ImageNet-1K	1	45.3%	40.1%	39.2%	28.2%
TAN	ImageNet-1K	1	49.0%	40.5%	38.2%	31.7%
AlexNet	ImageNet-1K	×	56.5%	39.8%	35.1%	23.7%
SimCLR	ImageNet-1K	×	67.5%	46.8%	49.3%	34.8%
Cap	Dedup-LAION-233M	×	77.5%	56.3%	63.9%	63.9%
MAE	Dedup-LAION-233M	×	62.5%	51.0%	54.7%	42.3%
ViP	Dedup-LAION-233M	1	56.5%	47.7%	49.6%	38.2%
DP-Cap	Dedup-LAION-233M	1	63.4%	51.9%	54.3%	44.5%

Under ε=8, DP-Cap achieves 63.4% linear probing accuracy on ImageNet, better than non-private MAE trained on the same dataset!

Model	Config	# parameters	s	ImageNet-1K (Vision)				ARO (Vision-Language)			
			1-shot	2-shot	5-shot	10-shot	LP	VGR	VGA	COCO	Flickr
ViP	Base	86.6M	2.5%	4.2%	8.5%	14.3%	56.5%	1	1	1	1
DP-Cap	Tiny	22.0M	7.9%	12.1%	18.7%	25.2%	57.5%	58.6%	79.1%	85.7%	87.1%
DP-Cap	Small	49.0M	9.0%	14.0%	21.6%	28.9%	61.1%	59.1%	80.5%	86.0%	86.6%
DP-Cap	Base	86.6M	10.3%	15.6%	24.2%	31.8%	63.4%	58.6%	82.4%	86.6%	87.2%
DP-Cap	Large	407.3M	11.8%	17.5%	26.2%	34.0%	65.8%	59.5%	80.1%	86.6%	86.5%

DP-Cap scales well with model size! DP-Cap-Large reaches 65.8%

References

(1) Gowthami Somenalli and Vasu Singla and Micab Goldblum and Jonas Geining and Tom Goldstein "Diffusion Act or Digital Forgery? Investigating Data n in Diffusion Models'

Self-supervised Learning", https://anivoro/abs/2304.13850 (3) Yaodong Yu and Maziar Sanjabi and Yi Ma and Kamalika Chaudhuri and Chuan Guo. "ViP: A Differentially Private Foundation Model for Computer Vision"

Context: Foundation models can heavily memorize their pre-training data!

Foundation models learn transferable representations that are useful for various modern AI tasks

However, training foundation models on web-scrawled data comes with risks:

 Unintended memorization Copyright issues Privacy issues (e.g. PIIs leaks)

Somepalli et al, 2023 [1]

Meehan et al, 2023 [2]

Mitigation: Differentially private representation learning

Differential Privacy (DP) provably guarantees that the model memorizes at most ϵ nats of information from each training sample

Traditionally DP representation learning is very hard

- ViP [3] made strides and trained a masked autoencoder with DP-SGD on a 233M subset of LAION-2B, obtaining image representations under ε = 8 that are comparable to AlexNet, but is still far from SOTA non-private performance

(a) Constant performance at fixed (b) Thanks to (a), we can reach B=1.3M Achieving low effective noise so great effective noise σ/B and S. performance and strong guarantees!

Tom Sander^{1,2,*}, Yaodong Yu^{1, 3,*}, Maziar Sanjabi¹, Alain Durmus², Yi Ma³, Kamalika Chaudhuri¹, Chuan Guo¹

(2) Ecole polytechnique, Paris

TL;DR A Differentially Private Captioner with better image

2) Joint optimization of the image encoder and text decoder with transformer

We apply DP-SGD to this loss and obtain privacy guarantees (i.e. ɛ) w.r.t. the 233M LAION-2B subset

representations than regular MAE!

- Hypothesis: More efficient information extraction due to concise text

- DP-Cap trained on the same dataset significantly outperforms previous SOTA,

1) MAE training of the image encoder on a synthetic dataset similar to ViP

demonstrating the effectiveness of the captioning approach under DP constraints

captions providing better supervision than image-only SSL

Method: Captioning, Predicting captions from images

Noisy DP-SGD update: $\widetilde{\mathbf{g}}_k := \frac{1}{B} \left| \sum_{\mathbf{z}} \operatorname{clip}_C \left(\nabla_{\boldsymbol{\theta}} \ell_i(\boldsymbol{\theta}_k) \right) + \mathcal{N} \left(0, C^2 \sigma^2 \mathbf{I} \right) \right|$

Under the hood: Captioning handles 1.3M batch sizes!

But good performance necessitates a low effective noise σ/B . Huge B is thus the only solution. Good news: DP-Cap scales gracefully with batch size!

Small $\varepsilon \leftrightarrow$ low memorization can only be achieved for σ >0.5