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Machine Learning Shows Promise for Analyzing Programs

Detecting and Exploiting Vulnerabilities
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Python Profiler

Program 
Optimization

Explain Code Translate Code



A code summarization based on GGNN (Li et al. 2017, Rabin et al. 2020, Bui et al. 2021)

Limitations: Lack Understanding of Program Semantics
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Permute lines 7,8,9 (move line 9 before line 8).

“Run” “Update”

Consequences: Lacking Robustness and Generalization

I. Overfit to spurious textual and task-specific patterns

II. Distribution shift: program syntax and task requirement changes



Semantics-preserving code transformations
Program Code Models

Common practice 1

Existing Practice of Teaching ML Code Semantics

Other code modalities
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Common practice 2

Execution Traces Natural LanguageStructuresProgram

Grounding

Code Models

Data 
Augmentation

Limitation: Expensive and No Guarantee

I. Expensive: Enumerate samples with different transformations and modalities

II. No guarantee: the make can still make mistakes on seen transformed samples



How to Specify Code Semantics and Build ML Models Respecting it?
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Operational Semantics

● Interpreter
● Static Analysis
● …

ML Models
e.g., LLMs

Bound by
● execution
● interpretation
● fix-point
● syntax



A New Group-Theoretic Framework to Formalize Learning Code Semantics
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Code Models

Symmetry Groups



Code Symmetry Group
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T4 T1

T2T3

Ti ∊ T

Semantics-preserving code transformations

T is a Group iff

● Associative: Ti・(Tj・Tk)=(Ti・Tj)・Tk

● Inverse: ∀Ti ∊ T, ∃Tj ∊ T, Ti・Tj =1 
● Identity: ∀1 ∊ T, 1・Ti = Ti・1
● Closure: ∀Ti, Tj∊ T, (Ti・Tj)∊ T

1: x=5
2: y=6
3: z=x+y

1: y=6
2: x=5
3: z=x+y

Instruction 

Reordering

……

E.g., Permutation Group T

Key Benefit
● Compositionality

○ Prove by Induction
● Amenable to Neural Architecture Design

○ AI4Science
○ Geometric DL



SymC: Permutation-Group-Invariant Transformer
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T4 T1

T2T3

Semantics-preserving permutations 
form a symmetry group T

SymC

f ( Ti ( P ) ) = f ( P ) ∀ Ti ∊ T

Data-augmentation-free
Pre-training-free

Provable Robustness 
Guarantee by Construction

Transformer Encoder
+

FF prediction head



Group Invariance and Equivariance in SymC
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code code’

emb emb’

Ti

Ti

r r

analysis 
result

pp

r: representation learning module, 
e.g., self-attention layers

c1: assert a > 0
c2: assert b > 0
c3: area = a * b
c4: return area

c1: assert b > 0
c2: assert a > 0
c3: area = a * b
c4: return area

e1 e2 e3 e4 e2e1 e3 e4

Ti

Ti

SymC Equivariant Self-Attention r

p: predictive learning module,
e.g., fully-connected prediction head

“calculate_area”

r

SymC Invariant Prediction Head



Aut(PDG): The Automorphism Group of Program Dependence Graph
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1 2

3

● Data Dependency

○ RAW: Read after Write

○ WAR: Write after Read

○ WAW: Write after Write

● Control Dependency

2 1

3

0 inf 0

inf 0 0

1 1 0

Program Dependence Graph Program Dependence Graph

Distance Matrix d:
Relative distance to the lowest common ancestor (LCA)Automorphic

(Isomorphic)
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Aut(PDG)-Equivariant Self-Attention

Code

Embeddings

Aut(PDG)-Equivariant Self-Attention

Attn(x)= V・(KT・Q)

Attn(xp)= Vp・((Kp)T・Qp)
= VppT(KT・Q)p=V・(KT・Q)p=Attn(x)p

How to make it equivariant only to Aut(PDG), 
the semantics-preserving permutations?

G-Attn(x)= V・(KT・Q+dPDG)

G-Attn(xp)= Vp・((Kp)T・Qp + dPDG)
= VppT(KT・Q)p+VpdPDG

=V・(KT・Q+dPDG)p=G-Attn(x)p



Aut(PDG)-Invariant Prediction Head
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Code

Embeddings

Aut(PDG)-Equivariant Self-Attention

Aut(PDG)-Invariant Prediction Head

Pooling Based, e.g., Mean, Sum, etc.

Sum( )

Avg( )

Token-level Based, e.g., [CLS]

GA= V・(KT・q + d[:,q])

column of 
query token 
to all others

a single 
query token



Results: Robustness Against Permutation 



Results: Generalization against Unseen Transformations

SymC outperforms the second-best by 1.63% 
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Results: Invariance and Generalization 

Train: normal binary
Test: obfuscated binary

Train: normal binary
Test: optimized binary

Function Similarity Detection Function Signature Prediction


