
Exploiting Code Symmetries for Learning

Program Semantics

Kexin Pei, Weichen Li*, Qirui Jin*, Shuyang Liu, Scott Geng
Lorenzo Cavallaro, Junfeng Yang, Suman Jana

1

Machine Learning Shows Promise for Analyzing Programs

Detecting and Exploiting Vulnerabilities

2

Python Profiler

Program
Optimization

Explain Code Translate Code

A code summarization based on GGNN (Li et al. 2017, Rabin et al. 2020, Bui et al. 2021)

Limitations: Lack Understanding of Program Semantics

3

Permute lines 7,8,9 (move line 9 before line 8).

“Run” “Update”

Consequences: Lacking Robustness and Generalization

I. Overfit to spurious textual and task-specific patterns

II. Distribution shift: program syntax and task requirement changes

Semantics-preserving code transformations
Program Code Models

Common practice 1

Existing Practice of Teaching ML Code Semantics

Other code modalities

4

Common practice 2

Execution Traces Natural LanguageStructuresProgram

Grounding

Code Models

Data
Augmentation

Limitation: Expensive and No Guarantee

I. Expensive: Enumerate samples with different transformations and modalities

II. No guarantee: the make can still make mistakes on seen transformed samples

How to Specify Code Semantics and Build ML Models Respecting it?

5

Operational Semantics

● Interpreter
● Static Analysis
● …

ML Models
e.g., LLMs

Bound by
● execution
● interpretation
● fix-point
● syntax

A New Group-Theoretic Framework to Formalize Learning Code Semantics

6
Code Models

Symmetry Groups

Code Symmetry Group

7

T4 T1

T2T3

Ti ∊ T

Semantics-preserving code transformations

T is a Group iff

● Associative: Ti・(Tj・Tk)=(Ti・Tj)・Tk

● Inverse: ∀Ti ∊ T, ∃Tj ∊ T, Ti・Tj =1
● Identity: ∀1 ∊ T, 1・Ti = Ti・1
● Closure: ∀Ti, Tj∊ T, (Ti・Tj)∊ T

1: x=5
2: y=6
3: z=x+y

1: y=6
2: x=5
3: z=x+y

Instruction

Reordering

……

E.g., Permutation Group T

Key Benefit
● Compositionality

○ Prove by Induction
● Amenable to Neural Architecture Design

○ AI4Science
○ Geometric DL

SymC: Permutation-Group-Invariant Transformer

8

T4 T1

T2T3

Semantics-preserving permutations
form a symmetry group T

SymC

f (Ti (P)) = f (P) ∀ Ti ∊ T

Data-augmentation-free
Pre-training-free

Provable Robustness
Guarantee by Construction

Transformer Encoder
+

FF prediction head

Group Invariance and Equivariance in SymC

9

code code’

emb emb’

Ti

Ti

r r

analysis
result

pp

r: representation learning module,
e.g., self-attention layers

c1: assert a > 0
c2: assert b > 0
c3: area = a * b
c4: return area

c1: assert b > 0
c2: assert a > 0
c3: area = a * b
c4: return area

e1 e2 e3 e4 e2e1 e3 e4

Ti

Ti

SymC Equivariant Self-Attention r

p: predictive learning module,
e.g., fully-connected prediction head

“calculate_area”

r

SymC Invariant Prediction Head

Aut(PDG): The Automorphism Group of Program Dependence Graph

10

1 2

3

● Data Dependency

○ RAW: Read after Write

○ WAR: Write after Read

○ WAW: Write after Write

● Control Dependency

2 1

3

0 inf 0

inf 0 0

1 1 0

Program Dependence Graph Program Dependence Graph

Distance Matrix d:
Relative distance to the lowest common ancestor (LCA)Automorphic

(Isomorphic)

11

Aut(PDG)-Equivariant Self-Attention

Code

Embeddings

Aut(PDG)-Equivariant Self-Attention

Attn(x)= V・(KT・Q)

Attn(xp)= Vp・((Kp)T・Qp)
= VppT(KT・Q)p=V・(KT・Q)p=Attn(x)p

How to make it equivariant only to Aut(PDG),
the semantics-preserving permutations?

G-Attn(x)= V・(KT・Q+dPDG)

G-Attn(xp)= Vp・((Kp)T・Qp + dPDG)
= VppT(KT・Q)p+VpdPDG

=V・(KT・Q+dPDG)p=G-Attn(x)p

Aut(PDG)-Invariant Prediction Head

12

Code

Embeddings

Aut(PDG)-Equivariant Self-Attention

Aut(PDG)-Invariant Prediction Head

Pooling Based, e.g., Mean, Sum, etc.

Sum()

Avg()

Token-level Based, e.g., [CLS]

GA= V・(KT・q + d[:,q])

column of
query token
to all others

a single
query token

Results: Robustness Against Permutation

Results: Generalization against Unseen Transformations

SymC outperforms the second-best by 1.63%

15

Results: Invariance and Generalization

Train: normal binary
Test: obfuscated binary

Train: normal binary
Test: optimized binary

Function Similarity Detection Function Signature Prediction

