Exploiting Code Symmetries for Learning

Program Semantics

Kexin Pei, Weichen Li*, Qirui Jin*, Shuyang Liu, Scott Geng
Lorenzo Cavallaro, Junfeng Yang, Suman Jana

CoLuMBIA UNIVERSITY

IN THE CITY OF NEW YORK

UNIVERSITY OF WA/ UNIVERSITY of WASHINGTON
MICHIGAN ”

Machine Learning Shows Promise for Analyzing Programs

ﬂ Brandon Rossi
@0xConda

= Detecting and Exploiting Vulnerabilities | told ChatGPT to pentest a scope of IPs and it found
' me $69,420 worth of bugs.

Explain Code Translate Code

A Vv LANGUAGE TRANSLATION
(]
/ ue) GitHub

t donut = Number (process.argv[2])

Python Profiler Copilot ,
SCALENE P : (Seaetsehagle/ sticonsaiigio)) const donut = Number(process.arg
e.log('FizzBuzz')
} .
if ((donut % 3 === @) && (donut
{
e console.log('FizzBuzz'
CPT-4 Program }
Optimization :
& Ask Copilot
RESULT :
4 Translate code into:
m (S s = /* Here is the explanation for the code above:
71 = i for i in Lalsc 0,300000 299999 1. We are taking the argument from the command line
and converting it to a number. python
2. We then use an if statement to check if the number
L.) is divisible by 3 and 5.
d5 # Proposed optimization: 3. If the number is divisible by 3 and 5, we output x
. Bl FizzBuzz. -
This code can be Optlmlzed by using the built-in function max() 4. If the number is not divisible by 3 and 5, we output @ ASI(Copllot
z1 = max(range(@, 300000)) # ~10x faster thelltmbent/

Limitations: Lack Understanding of Program Semantics

A code summarization based on GGNN (Li et al. 2017, Rabin et al. 2020, Bui et al. 2021)

Permute lines 7,8,9 (move line 9 before line 8).

1 private void FuncName(String modeStr, Matcher matcher) { ivate void FuncName(String modeStr, Matcher matcher) {
boolean commaSeperated = false;

(int i = 0; i < 1 || matcher.end() < modeStr.length(); i++)

if (i > 0 && (!commaSeperated || !matcher.find())) {

throw new IllegalArgumentException(modeStr);

boolean commaSeperated = false;
for (int i = 0; i < 1 || matcher.end() < modeStr.length(); i++) { 3 for
if (A >0 (!commaSeperated || !matcher.find())) { 1
thro w IllegalArgumentException(modeStr);

I
L

} }

String str = matcher.group(2);

=510 String str = matcher.group(2);
char type = str.charAt(str.length() - 1);
user = group = others = stickyBit = false;

char type = str.charAt(str.length()

user = group = others = stickyBit = false;

“Run” “Update”

Consequences: Lacking Robustness and Generalization

I. Overfit to spurious textual and task-specific patterns

Il. Distribution shift: program syntax and task requirement changes

Existing Practice of Teaching ML Code Semantics

Common practice 1

Data
Augmentation

Program

Common practice 2

Grounding

Program Structures Execution Traces Natural Language Code Models

Other code modalities

Limitation: Expensive and No Guarantee

I. Expensive: Enumerate samples with different transformations and modalities

Il. No guarantee: the make can still make mistakes on seen transformed samples

How to Specify Code Semantics and Build ML Models Respecting it?

Operational Semantics

b s
PRE COND o ; ——fu(b) Nbv(a) =0
Q=== if bthent ——5¢'
Si 125y Surid i 5
ttuS t+u 2%y
t a t u B u'
PARI—b—a——-bv(a)ﬂfv(u)=ﬂ PARZ—W——bV(Q) nﬁ’(f)=0’ ———————— :
tlu=5ru tu—1t|u :
' b.cx & % b'.cle u' P ﬁﬁ’ t i
CoM Ty RES-——,’—G—Chan(a) ¢ L !
Flu 225 x| AL =% r'\L |
b.a ! oy b.a ' i B
REN 'b_f—(:)' REC Ml%TJ—P(E) et !
fI——=¢l11 P@Ee)—r |
Bound by i
e execution !
e interpretation
e Interpreter e fix-point ; ML Models
e Static Analysis ~----®---Synfax......_..
e.g., LLMs

A New Group-Theoretic Framework to Formalize Learning Code Semantics

Symmetry Groups

Code Models

Code Symmetry Group

T is a Group iff

e Associative: Ti*(Tj*Tk)=(Ti*T)) - Tk
o Inverse: VTi€T, AT €T, Ti*Tj=1
o Identity: V1 €T, 1-Ti=Ti-1
e Closure: VTi, TiET, (Ti*T)e T

E.g., Permutation Group T

1: x=5 Instruction 1: y=6
2: y=6 - »2: x=5
3: z=x+y Reordering 3: z=x+y
Key Benefit
TeT e Compositionality
i o Prove by Induction
Semantics-preserving code transformations ¢ Amenable to Neural Architecture Design

o Al4Science
o Geometric DL

SymC: Permutation-Group-Invariant Transformer

Transformer Encoder
+
FF prediction head

fF(T.(P))=1f(P) VTI.ET

Data-augmentation-free Provable Robustness

Semantics-preserving permutations Pre-training-free
form a symmetry group T

Guarantee by Construction

Group Invariance and Equivariance in SymC

Ti
code--------- > code’
r r
Ti
emb--------- > emb’
P P
analysis
result

r: representation learning module,
e.g., self-attention layers

p: predictive learning module,
e.g., fully-connected prediction head

c2:
Cs3:
Ca:

assert a > 0
assert b > 0

return area

e1

Ci:

C3:
Ca:

SymC Equivariant Self-Attention

assert b > 0
assert a > 0
a *b
return area

e1

e4

SymC Invariant Prediction Head

“calculate_area”

Aut(PDG): The Automorphism Group of Program Dependence Graph

e Data Dependency
o RAW: Read after Write
o WAR: Write after Read
o WAW: Write after Write

e Control Dependency

Program Dependence Graph Program Dependence Graph

cet T e Distance Matrix d-

’ Automorpl_1ic) Relative distance to the lowest common ancestor (LCA)
(Isomorphic)

10

Aut(PDG)-Equivariant Self-Attention

Embeddings

Code

| Aut(PDG)-Equivaria

nt Self-Attention]

{ttn(x)= V(K™-Q

| Attnxp)= Vo ((Kp)-Qp)

= Vop (K" -Q)p=V (K" -Q)p=Attn(x)o

~

How to make it equivariant only to Aut(PDG),
the semantics-preserving permutations?

G-Attn(x)= V(K" *Q+drpg)

G-Attn(xp)= Vp *((Kp)" Qp + drpa)
= Vop' (K" -Q)p+Vpdrpa

=V (K" -Q+droc)p=G-Attn(x)p

/

11

Aut(PDG)-Invariant Prediction Head

[Aut(PDG)-Invariant Prediction Head }

’
’
\
1

1
\

Embeddings

1

| Aut(PDG)-Equivaria

Code

nt Self-Attention] ‘

!
\
1
1
!
!
1
1
1
1
1
1
1

ﬂooling Based, e.g., Mean, Sum, etc.\

Sum()

Avg()

Token-level Based, e.g., [CLS]
GA=V+«K"-qg + di.q)

a single column of
query token

“ uery token
\ query to all othey

12

Results: Robustness Against Permutation

I SYMC | code2seq | code2vec [GGNN [GPT-4 [WizardCoder [GraphCodeBert [DOBF CodeT5
1.00

0.75

0.50

0.25

0.00

Function Name F1 Function Name F1 /w Permutation Function Name Preservatoin

Results: Generalization against Unseen Transformations

The performance (F1) of SYMC and baselines against different unseen permuted
code transformations.

0.5 B SsYMC
- o
SymC outperforms the second-best by 1.63% B code2seq
04 ' code2vec
B GGNN
GPT-4
0.3 =

I WizardCoder

0.2

0.1

0.0 — — - —
Variable Statement Loop Exchange Boolean Unused Switch to If
Rename Permute Exchange Statement

Results: Invariance and Generalization

B SymC N Palmtree B PalmTree-O B PalmTree-N

Function Similarity Detection Function Signature Prediction
1.0 1.0
0.8 0.8
: : o —
Train: normal binary D06 n 0.6
Test: obfuscated binary <
0.4 0.4
0.2 0.2
10 Seen Unseen 1.0 Seen Unseen

0.8 0.8
. , O
Train: normal binary D06 o 0.6
Test: optimized binary <
0.4 0.4
0.2 0.2

Seen Unseen Seen Unseen

