

Investigating Pre-Training Objectives for Generalization In Vision-Based Reinforcement Learning

ICML 2024

Donghu Kim*, Hojoon Lee*, Kyungmin Lee*, Dongyoon Hwang, Jaegul Choo

KAIST AI

Motivation

• Various Pre-training algorithms for Visual-RL exists

Algorithms	Data Type	Formulation
CURL, MAE,	Image	(s)
ATC, R3M, SiamMAE,	Video	$(s)_{0:T}$
BC, SPR, IDM,	Demonstration	$(s, a)_{0:T}$
DT, CQL,	Trajectory	$(s, a, r)_{0:T}$

Motivation

- Image-based algorithms (CURL, MAE)
 - What do they learn? : **Spatial characteristics** of images
 - e.g., Object sizes and shapes
- Video-based algorithms (ATC, R3M, SiamMAE)
 - What do they learn? : **<u>Temporal dynamics</u>** of environments
 - e.g., Object movement speed and direction
- Demonstration / Trajectory based algorithms (BC, SPR, IDM / DT, CQL)
 - What do they learn? : <u>Task-relevant information</u>
 - e.g., Agents, enemies, and reward structure

Motivation

- How do the generalization capabilities of pre-training algorithms differ depending on objectives?
- Before we start this, we need a benchmark

1. Unified Protocol

- 1) Data source (Atari)
- 2) Same Model Architecture

2. Diverse Evaluation Distributions

• Dataset

• DQN-Replay-Dataset

• Model

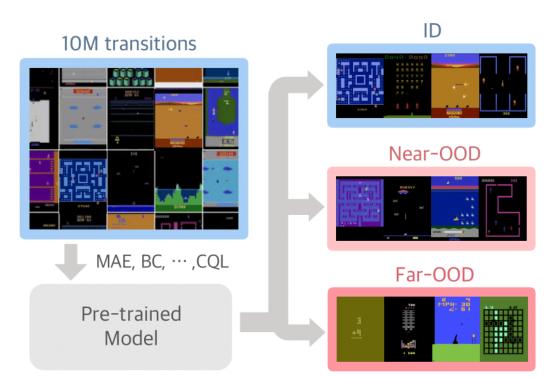
• Backbone, Neck, Head

• Training

• Pre-train & Fine-tune

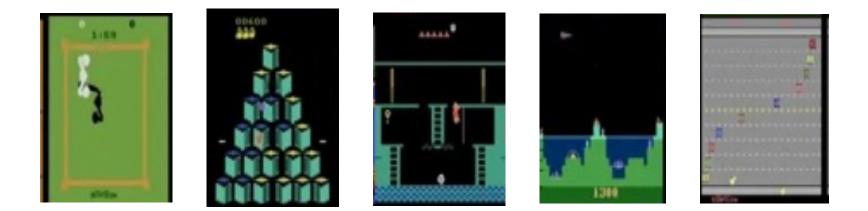
• Evaluation

- In Distribution(ID)
- Near Out-Of-Distribution(Near-OOD)
- Far Out-Of-Distribution(Far-OOD)

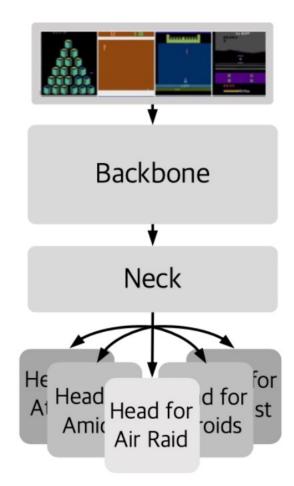


• Dataset

- DQN-Replay-Dataset
- We chose 10M DQN interactions for offline dataset across 50 Atari games
 - Diverse quality of 200K transitions for each game

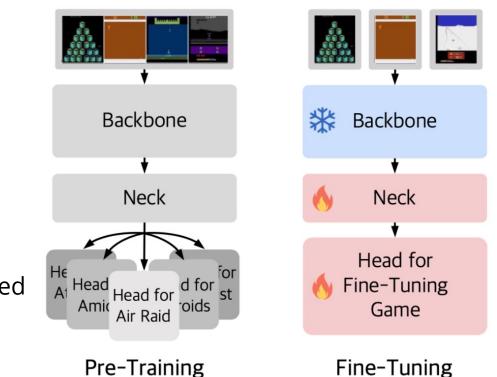


- Model
 - Backbone:
 - ResNet-50
 - Neck:
 - 2-layer MLP / Game-wise spatial embedding
 - Head:
 - Game-wise Linear Layer



• Training

- Pre-training
 - Pre-training with 10M DQN interactions in 50 Atari games
- Fine-tuning
 - Backbone is kept frozen; others are re-initialized
 - Algorithm: Offline BC, Online RL(Rainbow)



Evaluation

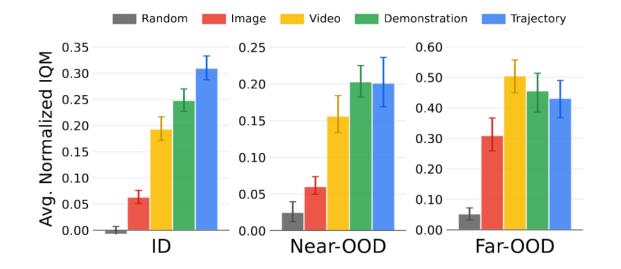
- In-Distribution(ID)
 - 50 games that were used for pre-training
- Near-OOD
 - 10 games with <u>similar tasks</u> in ID games
- Far-OOD
 - 5 games with <u>novel tasks</u>

10M transitions	
MAE, BC, ··· ,CQL	
Pre-trained Model	

Far-OOD

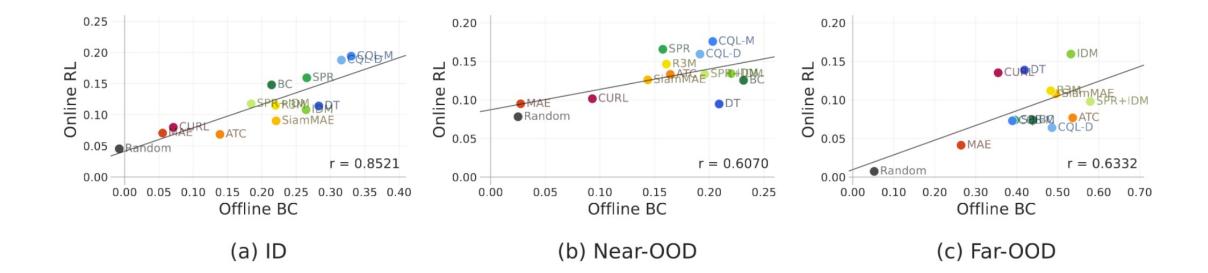
Main Results

- 1. Learning task-agnostic information from images and videos consistently enhance performance across all environments.
- 2. Learning task-specific knowledge from demonstrations and trajectories improved performance in 'familiar' environments but faltered under stronger distribution shifts.



Main Results

- 3. Effective adaptation in one scenario correlates to effective adaptation in the other.
 - Strong correlations between Offline BC & Online RL



If your downstream fine-tuning environments...

- Have <u>identical tasks</u> to the pre-training environments:
 → Try trajectory-based algorithms (e.g., DT, CQL, ...)
- Have <u>similar tasks</u> to the pre-training environments:
 → Try demonstration-based algorithms (e.g., BC, SPR, IDM)
- Are Unknown / May contain <u>novel tasks</u>:

→ Try video-based algorithms (e.g., ATC, R3M, SiamMAE)

Thank You!