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Motivation

• Various Pre-training algorithms for Visual-RL exists

2

Algorithms Data Type Formulation

CURL, MAE, … Image (𝑠) 

ATC, R3M, SiamMAE, … Video (𝑠)!:# 

BC, SPR, IDM, … Demonstration 𝑠, 𝑎 !:# 

DT, CQL, … Trajectory 𝑠, 𝑎, 𝑟 !:# 



Motivation
• Image-based algorithms (CURL, MAE)

• What do they learn? : Spatial characteristics of images

• e.g., Object sizes and shapes

• Video-based algorithms (ATC, R3M, SiamMAE)
• What do they learn? : Temporal dynamics of environments

• e.g., Object movement speed and direction

• Demonstration / Trajectory based algorithms (BC, SPR, IDM / DT, CQL)
• What do they learn? : Task-relevant information

• e.g., Agents, enemies, and reward structure
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Motivation
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• How do the generalization capabilities of pre-training algorithms differ 

depending on objectives?

• Before we start this, we need a benchmark

1. Unified Protocol

1) Data source (Atari)

2) Same Model Architecture

2. Diverse Evaluation Distributions



Experimental Setup
• Dataset

• DQN-Replay-Dataset

• Model
• Backbone, Neck, Head

• Training

• Pre-train & Fine-tune

• Evaluation
• In Distribution(ID)

• Near Out-Of-Distribution(Near-OOD)

• Far Out-Of-Distribution(Far-OOD)
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Experimental Setup
• Dataset

• DQN-Replay-Dataset

• We chose 10M DQN interactions for offline dataset across 50 Atari games

• Diverse quality of 200K transitions for each game

6Agarwal et al. “An optimisic perspective on offline reinforcement learning.”, ICML 2020.



Experimental Setup
• Model 

• Backbone: 

• ResNet-50

• Neck: 

• 2-layer MLP / Game-wise spatial embedding

• Head: 

• Game-wise Linear Layer

7



Experimental Setup
• Training 

• Pre-training

• Pre-training with 10M DQN interactions 

in 50 Atari games

• Fine-tuning 

• Backbone is kept frozen; others are re-initialized

• Algorithm: Offline BC, Online RL(Rainbow)
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Experimental Setup
• Evaluation 

• In-Distribution(ID)
• 50 games that were used for pre-training

• Near-OOD
• 10 games with similar tasks in ID games

• Far-OOD
• 5 games with novel tasks
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Main Results
1. Learning task-agnostic information from images and videos consistently enhance 

performance across all environments.

2. Learning task-specific knowledge from demonstrations and trajectories improved 

performance in ‘familiar’ environments but faltered under stronger distribution shifts.
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Main Results
3. Effective adaptation in one scenario correlates to effective adaptation in the other.

• Strong correlations between Offline BC & Online RL
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Takeaways
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If your downstream fine-tuning environments…

• Have identical tasks to the pre-training environments:
à Try trajectory-based algorithms (e.g., DT, CQL, …)

• Have similar tasks to the pre-training environments:
à Try demonstration-based algorithms (e.g., BC, SPR, IDM)

• Are Unknown / May contain novel tasks:
à Try video-based algorithms (e.g., ATC, R3M, SiamMAE)
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Thank You!


