Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Mimoun MOHAMED, François MALGOUYRES, Valentin EMIYA and Caroline CHAUX

Today, learning relies on differentiability

Tensors, Functions and Computational graph

This code defines the following computational graph:

[Source: https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html]

Learning by gradient descent: repeat
$$
\begin{cases} w & \leftarrow w - \eta \frac{\partial loss}{\partial w} \\ b & \leftarrow b - \eta \frac{\partial loss}{\partial b} \end{cases}
$$

Quantization is not differentiable

Quantization $H_q(x)$:

- not differentiable at some points
- gradient =

Quantization is not differentiable

Quantization $H_a(x)$:

• not differentiable at some points

• gradient =
$$
0
$$

Straight-Through Estimator1, 2, 3 (STE): replace $\frac{\partial H_q}{\partial x}$ by derivative of $Id.$

$$
\frac{\partial H_q}{\partial x} \approx 1
$$

¹ G. E. Hinton, *Neural networks for machine learning*, Coursera, video lectures, Lecture 15b, 2012

² Y. Bengio et al., "Estimating or propagating gradients through stochastic neurons for conditional computation", CoRR **arXiv:1308.3432** (2013)

3 M. Courbariaux et al., "Binaryconnect: training deep neural networks with binary weights during propagations", Advances in neural information processing systems **28** (2015) 3

Quantization is not differentiable

Quantization $H_a(x)$:

• not differentiable at some points

• gradient = 0

Straight-Through Estimator1, 2, 3 (STE): replace $\frac{\partial H_q}{\partial x}$ by derivative of $Id.$

$$
\frac{\partial H_q}{\partial x} \approx 1
$$

¹ G. E. Hinton, *Neural networks for machine learning*, Coursera, video lectures, Lecture 15b, 2012

² Y. Bengio et al., "Estimating or propagating gradients through stochastic neurons for conditional computation", CoRR **arXiv:1308.3432** (2013)

3 M. Courbariaux et al., "Binaryconnect: training deep neural networks with binary weights during propagations", Advances in neural information processing systems **28** (2015) 3

Sparse Support Recovery in Linear Models

Goal: Recover $S^* = \mathsf{supp}(x^*)$ from observation

 $y = Ax^* + e \in \mathbb{R}^m$

with $x^* \in \mathbb{R}^n$ s.t. $||x^*||_0 \leq k$ and $A \in \mathbb{R}^{m \times n}$

Problem formulation:

Minimize
$$
F(x) := \frac{1}{2} ||Ax - y||_2^2
$$
 (SPARSE)

 ℓ_0 sparsity constraint \Rightarrow NP-Hard⁴ problem

- Non-differentiable
- Non-convex
- Combinatorial $\rightarrow \binom{n}{k}$ possible supports
- Trivial if A orthogonal, difficult if A is *coherent*.

⁴G. Davis et al., "Adaptive greedy approximations", Constr. Approx. **13**, 57–98 (1997)

Reformulation of the Sparse Support Recovery Problem

$$
(x) \rightarrow H \rightarrow (x) \rightarrow F \rightarrow (loss)
$$

We can prove⁵ an equivalence between

$$
\underset{x \in \mathbb{R}^n, \|x\|_0 \le k}{\text{Minimize}} F(x) = \frac{1}{2} \|Ax - y\|_2^2 \qquad \text{and} \qquad \underset{\mathcal{X} \in \mathbb{R}^n}{\text{Minimize}} F(H(\mathcal{X}))
$$

where H is the sparsification operator $H\left(\mathcal{X}\right)\in\qquad \operatorname*{argmin}_{\mathbb{Z}}\qquad\|Ax-y\|_{2}^{2}$ $x \in \mathbb{R}^n$ supp (x) \subset largest_k (\mathcal{X})

 H is not differentiable $\;\rightarrow\;$ Straight-Through Estimator (STE): $\frac{\partial H}{\partial \mathcal{X}}(\mathcal{X})\approx 1$

⁵M. Mohamed et al., "Straight-through meets sparse recovery: the support exploration algorithm", ICML (2024)

Straight-Through Estimator for Sparse Support Recovery

$$
\mathcal{X}^{t+1} = \mathcal{X}^t - \eta \frac{\partial (F \circ H)}{\partial \mathcal{X}} (\mathcal{X}^t)
$$

\n
$$
= \mathcal{X}^t - \eta \frac{\partial F}{\partial x} (H(\mathcal{X}^t)) \cdot \frac{\partial H}{\partial \mathcal{X}} (\mathcal{X}^t)
$$

\n
$$
\approx \mathcal{X}^t - \eta \frac{\partial F}{\partial x} (H(\mathcal{X}^t)) \cdot 1
$$

\n
$$
= \mathcal{X}^t - \eta A^T (Ax^t - y)
$$

\n
$$
= \mathcal{X}^t - \eta A^T (Ax^t - y)
$$

\n
$$
(H(\mathcal{X}^t) = x^t \& F(x) = \frac{1}{2} ||Ax - y||_2^2)
$$

\nSEA iterative scheme:
$$
\mathcal{X}^{t+1} = \mathcal{X}^t - \eta A^T (Ax^t - y)
$$

Contributions in the paper

- SEA: a new algorithm for sparse support recovery in linear models
- An STE derived for sparse recovery (not quantization)
- Generates ability to explore beyond local minima
- Good performance in difficult settings (A strongly coherent, e.g., in spike deconvolution)
- Theoretical recovery guarantees under RIP hypothesis

Paper

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Poster session 2: Tue 23 Jul 1:30 p.m. - 3 p.m., Hall C 4-9 #1105