Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Mimoun MOHAMED, François MALGOUYRES, Valentin EMIYA and Caroline CHAUX

Today, learning relies on differentiability

Tensors, Functions and Computational graph

This code defines the following **computational graph**:

[Source: https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html]

Learning by gradient descent: repeat
$$\begin{cases} w & \leftarrow w - \eta \frac{\partial loss}{\partial w} \\ b & \leftarrow b - \eta \frac{\partial loss}{\partial b} \end{cases}$$

Quantization is not differentiable

Quantization $H_q(x)$:

- not differentiable at some points
- gradient = 0

Quantization is not differentiable

Quantization $H_q(x)$:

- not differentiable at some points
- gradient = 0

Straight-Through Estimator^{1, 2, 3} (STE): replace $\frac{\partial H_q}{\partial x}$ by derivative of Id.

$$\frac{\partial H_q}{\partial x} \approx 1$$

¹ G. E. Hinton, Neural networks for machine learning, Coursera, video lectures, Lecture 15b, 2012

² Y. Bengio et al., "Estimating or propagating gradients through stochastic neurons for conditional computation", CoRR arXiv:1308.3432 (2013)

³ M. Courbariaux et al., "Binaryconnect: training deep neural networks with binary weights during propagations", Advances in neural information processing systems 28 (2015)

Quantization is not differentiable

Quantization $H_q(x)$:

- not differentiable at some points
- gradient = 0

Straight-Through Estimator^{1, 2, 3} (STE): replace $\frac{\partial H_q}{\partial x}$ by derivative of Id.

$$\frac{\partial H_q}{\partial x} \approx 1$$

¹ G. E. Hinton, Neural networks for machine learning, Coursera, video lectures, Lecture 15b, 2012

² Y. Bengio et al., "Estimating or propagating gradients through stochastic neurons for conditional computation", CoRR arXiv:1308.3432 (2013)

³ M. Courbariaux et al., "Binaryconnect: training deep neural networks with binary weights during propagations", Advances in neural information processing systems 28 (2015)

Sparse Support Recovery in Linear Models

Goal: Recover $S^* = \text{supp}(x^*)$ from observation

 $y = Ax^* + e \in \mathbb{R}^m$

with $x^* \in \mathbb{R}^n$ s.t. $\|x^*\|_0 \leq k$ and $A \in \mathbb{R}^{m \times n}$

Problem formulation:

$$\underset{x \in \mathbb{R}^{n}, \|x\|_{0} \leq k}{\text{Minimize}} F(x) := \frac{1}{2} \|Ax - y\|_{2}^{2}$$
(SPARSE)

 ℓ_0 sparsity constraint \Rightarrow NP-Hard⁴ problem

- Non-differentiable
- Non-convex
- Combinatorial $\rightarrow \binom{n}{k}$ possible supports
- Trivial if A orthogonal, difficult if A is coherent.

⁴G. Davis et al., "Adaptive greedy approximations", Constr. Approx. 13, 57-98 (1997)

Reformulation of the Sparse Support Recovery Problem

We can prove⁵ an equivalence between

$$\underset{x \in \mathbb{R}^{n}, \|x\|_{0} \leq k}{\operatorname{Minimize}} F\left(x\right) = \frac{1}{2} \|Ax - y\|_{2}^{2} \quad \text{and} \quad \underset{\mathcal{X} \in \mathbb{R}^{n}}{\operatorname{Minimize}} F\left(H\left(\mathcal{X}\right)\right)$$

where H is the sparsification operator $H(\mathcal{X}) \in \underset{supp(x) \subseteq largest_k(\mathcal{X})}{\operatorname{argmin}} \|Ax - y\|_2^2$

H is not differentiable \rightarrow Straight-Through Estimator (STE): $\frac{\partial H}{\partial X}(X) \approx 1$

⁵M. Mohamed et al., "Straight-through meets sparse recovery: the support exploration algorithm", ICML (2024)

Straight-Through Estimator for Sparse Support Recovery

$$\begin{array}{c} \overbrace{\mathcal{X}} \longrightarrow H \longrightarrow x \longrightarrow F \longrightarrow loss \\ \end{array}$$

$$\begin{array}{c} \overbrace{\mathcal{X}}^{t+1} = \overbrace{\mathcal{X}}^{t} - \eta \frac{\partial (F \circ H)}{\partial \overleftarrow{\mathcal{X}}} (\overleftarrow{\mathcal{X}}^{t}) \\ = \overbrace{\mathcal{X}}^{t} - \eta \frac{\partial F}{\partial x} (H(\overleftarrow{\mathcal{X}}^{t})) \cdot \frac{\partial H}{\partial \overleftarrow{\mathcal{X}}} (\overleftarrow{\mathcal{X}}^{t}) \\ \approx \overbrace{\mathcal{X}}^{t} - \eta \frac{\partial F}{\partial x} (H(\overleftarrow{\mathcal{X}}^{t})) \cdot 1 \\ = \overbrace{\mathcal{X}}^{t} - \eta A^{T} (Ax^{t} - y) \\ \end{array} \qquad (STE update) \\ = \overbrace{\mathcal{X}}^{t} - \eta A^{T} (Ax^{t} - y) \\ \end{array} \qquad (H(\overleftarrow{\mathcal{X}}^{t}) = x^{t} \& F(x) = \frac{1}{2} ||Ax - y||_{2}^{2}) \\ SEA \text{ iterative scheme:} \qquad \overbrace{\mathcal{X}}^{t+1} = \overbrace{\mathcal{X}}^{t} - \eta A^{T} (Ax^{t} - y) \\ \end{array}$$

Contributions in the paper

- SEA: a new algorithm for sparse support recovery in linear models
- An STE derived for sparse recovery (not quantization)
- Generates ability to explore beyond local minima
- Good performance in difficult settings (*A* strongly coherent, e.g., in spike deconvolution)
- Theoretical recovery guarantees under RIP hypothesis

Paper

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Poster session 2: Tue 23 Jul 1:30 p.m. - 3 p.m., Hall C 4-9 #1105