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Today, learning relies on differentiability

[Source: https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html]

Learning by gradient descent: repeat

{
w ← w − η ∂loss

∂w

b ← b− η ∂loss
∂b
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Quantization is not differentiable
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Quantization Hq(x):

• not differentiable at some points

• gradient = 0

Straight-Through Estimator1, 2, 3 (STE):

replace
∂Hq

∂x by derivative of Id.

∂Hq

∂x
≈ 1
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Sparse Support Recovery in Linear Models

Goal: Recover S∗ = supp(x∗) from observation

y = Ax∗ + e ∈ Rm

with x∗ ∈ Rn s.t. ‖x∗‖0 ≤ k and A ∈ Rm×n

Problem formulation:

Minimize
x∈Rn, ‖x‖0≤k

F (x) :=
1

2
‖Ax− y‖22 (SPARSE)

`0 sparsity constraint⇒ NP-Hard4 problem

• Non-differentiable

• Non-convex

• Combinatorial→
(
n
k

)
possible supports

• Trivial if A orthogonal, difficult if A is coherent.

4G. Davis et al., “Adaptive greedy approximations”, Constr. Approx. 13, 57–98 (1997)
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Reformulation of the Sparse Support Recovery Problem

X H x F loss

We can prove5 an equivalence between

Minimize
x∈Rn, ‖x‖0≤k

F (x) = 1
2‖Ax− y‖22 and Minimize

X∈Rn
F (H (X ))

where H is the sparsification operator H (X ) ∈ argmin
x∈Rn

supp(x) ⊆ largestk(X )

‖Ax− y‖22

H is not differentiable → Straight-Through Estimator (STE): ∂H
∂X (X ) ≈ 1

5M. Mohamed et al., “Straight-through meets sparse recovery: the support exploration algorithm”, ICML (2024)
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Straight-Through Estimator for Sparse Support Recovery

X H x F loss

X t+1 = X t − η
∂(F ◦H)

∂X
(X t)

= X t − η
∂F

∂x
(H(X t)) · ∂H

∂X
(X t) (chain rule)

≈ X t − η
∂F

∂x
(H(X t)) · 1 (STE update)

= X t − ηAT (Axt − y) (H(X t) = xt & F (x) =
1

2
‖Ax− y‖22)

SEA iterative scheme: X t+1 = X t − ηAT (Axt − y)

6



Contributions in the paper

• SEA: a new algorithm for sparse support recovery in linear models

• An STE derived for sparse recovery (not quantization)

• Generates ability to explore beyond local minima

• Good performance in difficult settings (A strongly coherent, e.g., in spike

deconvolution)

• Theoretical recovery guarantees under RIP hypothesis
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