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Overview
We propose a novel imitation learning (IL) algorithm,
Preference Aided Imitation Learning from imperfect
demonstrations (PAIL). Specifically, PAIL learns a
preference reward by querying experts for limited
preferences from imperfect demonstrations. By
reweighting imperfect demonstrations with the
preference reward for higher quality and selecting
explored trajectories with high cumulative preference
rewards to augment imperfect demonstrations, PAIL
breaks through the performance bottleneck of the
imperfect demonstrations.

The Mechanism of PAIL
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Overview of Preference Aided Imitation Learning (PAIL)
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Preferences Reward Learning
Preferences Reward is learned by Bradley & Terry model
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PAIL applies AlL to imitate from a reweighted demonstration dataset. Trajectories from the demonstrations
r5(7)

are reweighted by:
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Augmented trajectories, which will be added into the imperfect demonstration dataset, are sampled from
replay buffer by:
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Visualization of Grid World
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Mujoco & DMC Benchmarks

trajectory for target 2

Task & Dataset | PEBBLE  BC-PEBBLE AILP PAIL

Ant-v2, L 0.31+£0.00 0.31+0.00 0.33+0.01 0.80+0.01
Ant-v2, M 0.31+£0.00 0.32+0.00 0.38+0.03 0.88+0.01
Ant-v2, H 0.31+£0.00 0.32+0.00 0.39+0.08 0.94+0.00
HalfCheetah-v2,L | 0.55+0.08 0.75+0.03 0.30+0.01 0.67 & 0.03
HalfCheetah-v2, M | 0.55+0.08 0.79+0.02 0.43+0.05 0.71 4 0.04
HalfCheetah-v2, H | 0.55+0.08 0.89+0.01 0.44+0.10 0.89 4+ 0.01
Hopper-v2, L 0.2940.02 0.22+0.05 0.29+0.07 0.91+0.02
Hopper-v2, M 0.2940.02 0.26+0.02 0.27+0.03 0.94+0.07
Hopper-v2, H 0.2940.02 0.28+0.05 0.37+0.12 0.94+0.01
Humanoid-v2, L 0.0540.00 0.04+0.01 0.03+0.02 0.97+0.01
Humanoid-v2, M 0.0540.00 0.06+£0.01 0.01+0.01 1.01+0.01
Humanoid-v2, H 0.0540.00 0.06+£0.01 0.02+0.02 1.08+0.01
Walker2d-v2, L 0.0840.02 0.08+0.03 0.26+0.03 0.56+0.12
Walker2d-v2, M 0.084+0.02 0.05+0.02 0.32+0.06 0.80+0.02
Walker2d-v2, H 0.0840.02 0.10+£0.02 0.38+0.06 0.74+0.16
Average \ 0.26 0.3 0.28 0.86

cheetah_run, M 0.64+0.13 0.86+0.15 0.37+0.08 0.86+0.00
quadruped walk, M | 0.48+0.08 0.64+0.07 0.67+0.04 0.90+0.01
walker_walk, M 0.96+0.00 0.96+0.02 0.51+0.12 0.96 + 0.00
Average | 0.69 0.82 0.52 0.91

Visualization of Preference Reward

PAIL, Walker2d-v2, M
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