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Background

Why quantile regression?

• Reason 1: Quantile regression allows us to study the impact of predictors

on different quantiles of the response distribution, and thus provides a

complete picture of the relationship between responses and covariates.

• Reason 2: Robust to outliers in response observations.

• Reason 3: Estimation and inference are distribution-free, and

heterogeneity is usually allowed in quantile regression models.
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Motivation

Although quantile regression can better handle data heterogeneity,

computational challenges arise when both sample size and dimension are large

due to the non-smooth check loss function. Consequently, it is natural to

consider a distributed estimation procedure to address scalability concerns.

Figure: The check loss function.
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Contribution

• Methodology novelty. We transform the original quantile regression into

the least-squares optimization. By applying a double-smoothing

approach, we extend a previous Newton-type distributed approach without

the restrictive independent assumption between the error term and

covariates. An efficient algorithm is developed, which enjoys high

computation and communication efficiency.

• Theoretical assessments. We prove that the proposed distributed estimator

achieves a near-oracle convergence rate and high support recovery

accuracy after a constant number of iterations.

• Numerical verification. Another contribution of this work is the

comprehensive studies on the validity and effectiveness of the proposed

algorithm in various synthetic and real-life examples, which further support

the theoretical findings in this paper.
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The Linear Quantile Model

For a given quantile level τ ∈ (0, 1), we consider to construct the conditional

τ -th quantile function Qτ (Y |X ) with a linear model

Qτ (Y |X ) = XTβ∗(τ) =
∑p

j=0 xjβ
∗
j (τ), where Y ∈ R is the response and

X = (x0, x1, . . . , xp)
T ∈ Rp+1 is p + 1-dimensional covariate vector with x0 ≡ 1.

Here, β∗ = β∗(τ) = (β∗
0 (τ), β

∗
1 (τ), . . . , β

∗
p (τ)) is the true coefficient that can

be obtained by

β∗ = argmin
β∈Rp+1

Q(β) = argmin
β∈Rp+1

E
[
ρτ (Y − XTβ)

]
,

where ρτ (u) = u{τ − I (u ≤ 0)} is the standard check loss function and we

denote the error term as ε = Y − XTβ∗.
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Newton-type Transformation on Quantile Regression

Given an initial estimator β0, the population form of the Newton-Raphson

iteration is

β1 = β0 − H−1(β0)E [∂Q(β0)] , (1)

where ∂Q(β) = X{I (Y − XTβ ≤ 0)− τ} is the subgradient of the check loss

function with respect to β, and

H(β) = ∂E[∂Q(β)]/∂β = E[XXTfε|X (X
T(β − β∗))]

denotes the population Hessian matrix of E[Q(β)]. Here, fε|X (·) is the
conditional density of ε given X .

When the initial estimator β0 is close to the true parameter β∗, H(β0) will be

close to H(β∗) = E[XXTfε|X (0)]. Motivated by this, we further approximate

H(β∗) with Dh(β0) such that

H(β0) ≈ H(β∗) ≈ Dh(β0) = E(XXTKh(e0)),

where e0 = Y − XTβ0, and Kh(·) = K(·/h)/h with K(·) denoting a symmetrix

and non-negative kernel function, h → 0 is the bandwidth.
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Newton-type Transformation on Quantile Regression

Denote a pseudo covariate as X̃ h =
√

Kh(e0)X , and replace H(β0) with

Dh(β0) in (1) leads to the following iteration,

β1 = D−1
h (β0)E

{
X̃ h

[
X̃

T

h β0 −
1√

Kh(e0)
(I (e0 ≤ 0)− τ)

]}
.

If we further define a new pseudo response as

Ỹh = X̃
T

h β0 −
1√

Kh(e0)
(I (e0 ≤ 0)− τ) ,

then β1 = D−1
h (β0)E(X̃ hỸh) = argminβ∈Rp+1 E(Ỹh − X̃

T

h β)
2 is the least

squares regression coefficient of Ỹh on X̃ h. To further encourage the sparsity of

the coefficient vector, we consider the ℓ1-penalized least squares problem as

β1,ℓ1
= argmin

β∈Rp+1

1

2
E
(
Ỹh − X̃

T

h β
)2

+ λ|β|1.
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Distributed Estimation with a Double-smoothing Shifted

Loss Function

Let ZN = {(X i ,Yi )}Ni=1 are randomly and evenly stored in m machines

M1, . . . ,Mm with the sample size n. Let D̂k,h = 1
n

∑
i∈Mk

X̃ i,hX̃
T

i,h and

D̂h = 1
m

∑m
k=1 D̂k,h = 1

N

∑N
i=1 X̃ i,hX̃

T

i,h as the k-th local and total sample

covariance matrix.

The pseudo local and global loss functions are

Lk(β) =
1

2n

∑
i∈Mk

(Ỹi,h − X̃
T

i,hβ)
2 and LN(β) =

1

2N

N∑
i=1

(Ỹi,h − X̃
T

i,hβ)
2.

According to the Taylor expansion of LN(β) around β̂0, we have

LN(β, D̂h(β) = LN(β̂0) + {∂LN(β̂0)}
T(β − β̂0) +

1

2
(β − β̂0)

TD̂h(β − β̂0).

(2)
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Distributed Estimation with a Double-smoothing Shifted

Loss Function

To save the communication cost, we replace the global Hessian D̂h with the

local Hessian D̂1,b. Here, h and b denote the global bandwidth and local

bandwidth. Thus we can rewrite (2) as

LN(β, D̂h) = LN(β, D̂1,b)︸ ︷︷ ︸
(i) Shifted loss

+OP

{
∥D̂h − D̂1,b∥op · |β − β̂0|

2
2

}
︸ ︷︷ ︸

(ii) Approximation error

.
(3)

With proper local bandwidth b andthe global bandwidth h, we can prove

∥D̂h − D̂1,b∥op = oP(1). Remove the terms that are independent of β in (i) and

the negligible approximation error (ii) in (3), and add the lasso penalty, the

distributed estimation can be simplified to

β̂1,h = argmin
β∈Rp+1

1

2n

∑
i∈M1

(X̃
T

i,bβ)
2 − βT

{
zN + (D̂1,b − D̂h)β̂0

}
+ λN |β|1.
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Distributed Estimation with a Double-smoothing Shifted

Loss Function

Given β̂1,h as the estimator from the first iteration, we can similarly construct

an iterative distributed estimation procedure,

β̂t,h = argmin
β∈Rp+1

1

2n

∑
i∈M1

(
(X̃

(t)

i,b)
Tβ
)2

− βT
{
z (t)
N +

(
D̂

(t)

1,b − D̂
(t)

h

)
β̂t−1,h

}
+ λN,t |β|1.

(4)

In addition, we introduce the pooled estimator:

β̂pool = argmin
β∈Rp+1

1

2N

N∑
i=1

(Ỹi,h − X̃
T

i,hβ)
2 + λ|β|1. (5)
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Statistical Guarantees: Convergence rate

Theorem 1 (Convergence rate). Suppose that the initial estimator satisfies

that |β̂0,h − β∗|2 = OP(
√

s logN/n) and let h ≍ (s logN/N)1/3,

b ≍ (s log n/n)1/3. Define κ(a, b, g) = max

{
sa
(
log n
n

) 2g+3
6 , sb

(
log N
n

) g+1
2

}
, for

1 ≤ g ≤ t, take

λN,g = C

(√
logN

N
+ κ(

5g

6
, g , g)

)
,

where C is a sufficiently large constant. Then under Assumptions 1-6, we have

∣∣∣β̂t,h − β∗
∣∣∣
2
= OP

(√
s logN

N
+ κ(

5t + 3

6
,
2t + 1

2
, t)

)
. (6)
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Statistical Guarantees: Support recovery

Theorem 2 (Support recovery). Let Ŝt = {j : β̂p
t,h ̸= 0, j ∈ N+} be the

support of β̂t,h, where t ≥ 1. Under the same conditions of Theorem 1, we

have P(Ŝt ⊆ S) → 1. Furthermore, if there exists a sufficiently large constant

C > 0 such that

min
j∈S

∣∣β∗
j

∣∣ ≥ C
∥∥∥I−1

S×S

∥∥∥
∞

(√
logN

N
+ κ(

5t

6
, t; t)

)
.

Then we have P(Ŝt = S) → 1.
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Statistical Guarantees

When t ≥ t0 for some t0, the estimator can achieve global convergence

rate OP

(√
s log N

N

)
and beta-min condition

min
j∈S

∣∣β∗
j

∣∣ ≥ C
∥∥∥I−1

S×S

∥∥∥
∞

(√
logN

N

)
,

here logN ≍ logmax(p,N)).
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Contrastive Method

We present four contrasting methods with our proposed DHSQR method:

(a) Averaged DC (Avg-DC) estimator which computes the ℓ1-penalized QR

estimators on the local machine and then combines the local estimators by

taking the average;

(b) The distributed high-dimensional sparse quantile regression estimator on a

single machine with pooled data defined in (5), which is denoted by

Pooled DHSQR;

(c) Distributed robust estimator with Lasso (DREL), see in Chen et al. 2020;

(d) Distributed penalty quantile regression estimator (DPQR) with convolution

smoothing, see in Jiang and Yu 2021; Tan, Battey, and Zhou 2022.
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Theoretical Comparison

Furthermore, we wish to reiterate the theoretical innovations of our method,

DHSQR. Unlike the DREL method, we relax the homoscedasticity assumption

of the error term. In contrast to the Avg-DC and DPQR methods, we provide

theoretical guarantees to support recovery.

Table: Comparison of theoretical properties of different methods.

Method Statistical convergence Support recovery Heterogeneity

DHSQR ✓ ✓ ✓

DREL ✓ ✓ ×
DPQR ✓ × ✓

Avg-DC ✓ × ×
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Simuation Setting

We generate synthetic data from the following linear models, corresponding to

the homoscedastic error case (model 1) and the heteroscedastic error case

(model 2):

• Model 1 (homoscedastic error): Yi = XT
i β

∗ + εi

• Model 2 (heteroscedastic error): Yi = XT
i β

∗ + (1 + 0.4xi1)εi ,

where X i = (1, xi1, . . . , xip)
T is a (p+1)-dimensional vector and (xi1, . . . , xip) is

drawn from a multivariate normal distribution N(0,Σ) with covariance matrix

Σij = 0.5|i−j| for 1 ≤ i , j ≤ p, the true parameter β∗ = (1, 1, 2, 3, 4, 5, 0p−5)
T.

We fix the dimension p = 500 and consider values of τ = 0.5. We consider the

following three noise distributions:

1. Normal distribution: the noise εi ∼ N(0, 1);

2. t3 distribution: the noise εi ∼ t(3);

3. Cauchy distribution: the noise εi ∼ Cauchy(0, 1).
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Effect of the number of iterations Under Heavy-Tailed

Noise

Figure: The ℓ2-error with an error bound between the true parameter and the
estimated parameter versus the number of iterations with a fixed quantile level
τ = 0.5. In the left panel, from top to bottom represent noise distributions that are
Normal, t3, and Cauchy distribution for the homoscedastic error case, respectively. In
the right panel, from top to bottom represent noise distributions as Normal, t3, and
Cauchy distribution for the heteroscedastic error case, respectively.
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Effect of Total Sample Size and Local Sample Size

Figure: The ℓ2-error from the true parameter versus the number of total and local
sample size with a fixed quantile level τ = 0.5. In the top panel, from left to right
show the effect of different total sample sizes N for the homoscedastic and
heteroscedastic error cases, respectively. In the bottom panel, from left to right show
the effect of different local sample sizes n for the homoscedastic and heteroscedastic
error cases, respectively. 23 / 27



Effect of Total Sample Size and Local Sample Size

Figure: The F1 score from the true parameter versus the number of total and local
sample size with a fixed quantile level τ = 0.5. In the top panel, from left to right
show the effect of different total sample sizes N for the homoscedastic and
heteroscedastic error cases, respectively. In the bottom panel, from left to right show
the effect of different local sample sizes n for the homoscedastic and heteroscedastic
error cases, respectively. 24 / 27



Computation Time Comparison

Figure: The Time computation of five estimators under different total sample sizes N.

In the figure, DHSQR outperforms others with the fastest single iteration time,

followed by DPQP. Pooled DHSQR and DREL show comparable speeds, while

Avg-DC is the slowest.
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Thank you for listening!
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