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Background

Why quantile regression?

e Reason 1: Quantile regression allows us to study the impact of predictors
on different quantiles of the response distribution, and thus provides a
complete picture of the relationship between responses and covariates.

e Reason 2: Robust to outliers in response observations.

e Reason 3: Estimation and inference are distribution-free, and
heterogeneity is usually allowed in quantile regression models.
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Motivation

Although quantile regression can better handle data heterogeneity,
computational challenges arise when both sample size and dimension are large
due to the non-smooth check loss function. Consequently, it is natural to
consider a distributed estimation procedure to address scalability concerns.

P-\U)

T-1 T

Figure: The check loss function.
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Contribution

e Methodology novelty. We transform the original quantile regression into
the least-squares optimization. By applying a double-smoothing
approach, we extend a previous Newton-type distributed approach without
the restrictive independent assumption between the error term and
covariates. An efficient algorithm is developed, which enjoys high
computation and communication efficiency.

e Theoretical assessments. We prove that the proposed distributed estimator
achieves a near-oracle convergence rate and high support recovery
accuracy after a constant number of iterations.

e Numerical verification. Another contribution of this work is the
comprehensive studies on the validity and effectiveness of the proposed
algorithm in various synthetic and real-life examples, which further support
the theoretical findings in this paper.
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The Linear Quantile Model

For a given quantile level 7 € (0, 1), we consider to construct the conditional
7-th quantile function Q-(Y|X) with a linear model
Q- (Y|X)=XTB*(r) = 270 %Bf (7), where Y € R is the response and
X = (x0, X1, ... ) € RP™ is p + 1-dimensional covariate vector with xo = 1.
Here, 8" = 3* (7') = (B (1), B1(7), ..., By(7)) is the true coefficient that can
be obtained by

B" = argmin Q(B) = argmin E |p-(Y — XT,B)] ,

BeRPTL BERPH!

where pr(u) = u{7 — I(u < 0)} is the standard check loss function and we
denote the error term as e = Y — XT3*.
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Newton-type Transformation on Quantile Regression

Given an initial estimator 3, the population form of the Newton-Raphson
iteration is

,31 = /Bo - Hil(,@o)]E [aQ(ﬂO)] ) (1)

where 0Q(8) = X{I(Y — XT3 < 0) — 7} is the subgradient of the check loss
function with respect to 3, and

H(B) = 9E[0Q(B)]/98 = E[XX " f.x (X" (8 — B"))]

denotes the population Hessian matrix of E[Q(3)]. Here, £ x(-) is the
conditional density of € given X.

When the initial estimator 3, is close to the true parameter 3%, H(3,) will be
close to H(3*) = E[XX™f.;x(0)]. Motivated by this, we further approximate
H(B*) with Dx(3,) such that

H(B,) = H(B") = Di(Bo) = E(XX" Kn(en)),

where eg = Y — XT3,, and K,(-) = K(-/h)/h with K(-) denoting a symmetrix
and non-negative kernel function, h — 0 is the bandwidth.
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Newton-type Transformation on Quantile Regression

Denote a pseudo covariate as X, = \/Ks(e0)X, and replace H(B,) with
D.(B,) in (1) leads to the following iteration,

7Kh(eo) (/(eo S 0) — T):| }

If we further define a new pseudo response as

~T
XnBo —

B = D;l(ﬁo)E {)N(h

Vh:)?;ﬁo_ (I(e0 <0)—7),

1
v/ Kn(eo)

then B, = D;l(ﬂO)E()?h Yh) = argminggpp+1 E(Ys — )~(,,T/B)2 is the least
squares regression coefficient of Y}, on X,. To further encourage the sparsity of
the coefficient vector, we consider the /1-penalized least squares problem as

loro T o)
By, = argmin ~E (Y,, - x,,ﬁ) £ 2B

BERPHL
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Distributed Estimation with a Double-smoothing Shifted
Loss Function

Let ZV = {(X;, i)}/, are randomly and evenly stored in m machmes

1
M, ..., My, with the sample size n. Let Dy j = 5 2ieM, X;,hX,-7h and
= S <~ =T
Dy=L13" Diw=% Z,N:l XinXin as the k-th local and total sample
covariance matrix.
The pseudo local and global loss functions are

N
£4(B) = 5= 3 (Vin—X:uB) and Lu(8) = 55 > (Vin — X1u8).

i€ My i=1

According to the Taylor expansion of Ln(3) around ,@0, we have

Ln(8, Do) = £u(Bo) +{OLu(B)Y" (8 — Bo) + 5(8 — Bo) " Di(8 — Bo).
(2)
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Distributed Estimation with a Double-smoothing Shifted
Loss Function

To save the communication cost, we replace the global Hessian D, with the
local Hessian D1 . Here, h and b denote the global bandwidth and local
bandwidth. Thus we can rewrite (2) as

£n(8,B4) = Lu(B, D1.6) + 05 {1Ds — Dusllon 18— Bol3 }-
———

() Shifted loss

(3)

(ii) Approximation error

With proper local bandwidth b andthe global bandwidth h, we can prove

|Dh — D1.b|lop = 08(1). Remove the terms that are independent of 3 in (i) and
the negligible approximation error (ii) in (3), and add the lasso penalty, the
distributed estimation can be simplified to

'Bl,h = arg min 2i Z ()N(?:bﬂ)z — BT {ZN + (E)l,b — Bh)ﬁo} + |81

1 n
BERPT ieMy
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Distributed Estimation with a Double-smoothing Shifted
Loss Function

Given Bl,h as the estimator from the first iteration, we can similarly construct
an iterative distributed estimation procedure,

-~ .1 < (1) 2 ~ (1) (0 5
B: = arg min _— Z ((Xi,b)Tﬁ) — IBT {Z(;\f) + (Dl,b - D, ) ,3:71,;,} + An,elBl1-
BERPHL 2n Pyvh
(4)
In addition, we introduce the pooled estimator:
Broot = argmm2 Z(Y b= XinB) + ABlL. (5)

BERPHL
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Statistical Guarantees: Convergence rate

Theorem 1 (Convergence rate). Suppose that the initial estimator satisfies
that |B, , — B*|2 = Os(+/slog N/n) and let h < (slog N/N)"/>,

2143 g1
b= (slog n/n)'/?. Define r(a, b, g) = max{sa (lgn) s sb (leN) ™ } for
1 < g <'t, take

log N 5g
>\N7g_C< N +K’(67g7g)>a

where C is a sufficiently large constant. Then under Assumptions 1-6, we have

o~ X log N 3 2t+1
],@t,h—ﬁ)fon»(\/“ﬁ (P2 2 ,r)). (6)
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Statistical Guarantees: Support recovery

Theorem 2 (Support recovery). Let S = {: Aﬁh #0,j € Ny} be the
support of Bt’h, where t > 1. Under the same conditions of Theorem 1, we
have P(S; C S) — 1. Furthermore, if there exists a sufficiently large constant

C > 0 such that
log N 5t
L( N *”(e’tvf))

min 5] = C 153

-~

Then we have P(S; = S) — 1.

16/27



Statistical Guarantees

When t > t; for some t;, the estimator can achieve global convergence

rate Op sleN ) and beta-min condition
N
‘ [log N
0o N ’

ol = s

here log =< log max(p, N)).
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Contrastive Method

We present four contrasting methods with our proposed DHSQR method:

(a) Averaged DC (Avg-DC) estimator which computes the ¢;-penalized QR

estimators on the local machine and then combines the local estimators by
taking the average;

(b) The distributed high-dimensional sparse quantile regression estimator on a

single machine with pooled data defined in (5), which is denoted by
Pooled DHSQR;

(c) Distributed robust estimator with Lasso (DREL), see in Chen et al. 2020;

(d) Distributed penalty quantile regression estimator (DPQR) with convolution
smoothing, see in Jiang and Yu 2021; Tan, Battey, and Zhou 2022.
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Theoretical Comparison

Furthermore, we wish to reiterate the theoretical innovations of our method,
DHSQR. Unlike the DREL method, we relax the homoscedasticity assumption
of the error term. In contrast to the Avg-DC and DPQR methods, we provide
theoretical guarantees to support recovery.

Table: Comparison of theoretical properties of different methods.

Method  Statistical convergence  Support recovery  Heterogeneity

DHSQR v v v
DREL v v X
DPQR v X v
Avg-DC v X X
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Simuation Setting

We generate synthetic data from the following linear models, corresponding to
the homoscedastic error case (model 1) and the heteroscedastic error case
(model 2):

e Model 1 (homoscedastic error): Y; = X7 3" +¢;
e Model 2 (heteroscedastic error): Y; = X7 3" + (1 + 0.4x:1)ei,

where X; = (1,xi1,...,xp)" is a (p+ 1)-dimensional vector and (xi1, ..., Xjp) is
drawn from a multivariate normal distribution N(0, X) with covariance matrix
¥; =057 for 1 <i,j < p, the true parameter 8* = (1,1,2,3,4,5,0,_5)".
We fix the dimension p = 500 and consider values of 7 = 0.5. We consider the
following three noise distributions:

1. Normal distribution: the noise ; ~ N(0,1);
2. t3 distribution: the noise &; ~ t(3);

3. Cauchy distribution: the noise £; ~ Cauchy(0,1).
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Effect of the

Noise
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Figure: The £z-error with an error bound between the true parameter and the
estimated parameter versus the number of iterations with a fixed quantile level

7 = 0.5. In the left panel, from top to bottom represent noise distributions that are
Normal, t3, and Cauchy distribution for the homoscedastic error case, respectively. In
the right panel, from top to bottom represent noise distributions as Normal, t3, and
Cauchy distribution for the heteroscedastic error case, respectively.
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Effect of Total Sample Size and Local Sample Size
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Figure: The £z-error from the true parameter versus the number of total and local
sample size with a fixed quantile level 7 = 0.5. In the top panel, from left to right
show the effect of different total sample sizes N for the homoscedastic and
heteroscedastic error cases, respectively. In the bottom panel, from left to right show
the effect of different local sample sizes n for the homoscedastic and heteroscedastic

error cases, respectively. 2327



Effect of Total Sample Size and Local Sample Size
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Figure: The F; score from the true parameter versus the number of total and local
sample size with a fixed quantile level 7 = 0.5. In the top panel, from left to right
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show the effect of different total sample sizes N for the homoscedastic and

heteroscedastic error cases, respectively. In the bottom panel, from left to right show
the effect of different local sample sizes n for the homoscedastic and heteroscedastic

error cases, respectively.
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Computation Time Comparison
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Figure: The Time computation of five estimators under different total sample sizes N.
In the figure, DHSQR outperforms others with the fastest single iteration time,

followed by DPQP. Pooled DHSQR and DREL show comparable speeds, while
Avg-DC is the slowest.
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