Bridging Data Gaps in Diffusion Models with Adversarial Noise-Based Transfer Learning

Xiyu Wang¹, Baijiong Lin², Daochang Liug¹, Ying-Cong Chen², Chang Xu¹ ¹The University of Sydney ²The Hong Kong University of Science and Technology (Guangzhou)

Unbalance Transfer Result

Two sets of images generated from corresponding fixed noise inputs at different stages of fine-tuning DDPM from FFHQ to 10-shot Sunglasses. When the bottom image successfully transfers to the target domain, the top image is already overfitting.

Motivation

- Estimating the transfer direction for each timesteps of Diffusion Models training to boosting the transfer.
- Searching the targeted domain related noise instead of mechanism noise in diffusion models training for less iteration.

Contribution

- ANT: an efficient fusion method leverage existing knowledge from the source domain to aid in training the target domain
- Experiments on few-shot image generation tasks affirm the effectiveness of our ANT.

target domain.

according to the input image.

$$\min_{\theta} \max_{\epsilon} \mathbb{E}_{t,x_0} \left[\| \epsilon - \epsilon_{\theta} (x_t) \| \right]$$

Our Method

Similarity-guided training employs a classifier to estimate the divergence between the source and target domains, leveraging existing knowledge from the source domain to aid in training the

 $\min_{\boldsymbol{\phi}} \mathbb{E}_{t,x_0,\epsilon} \left\| \left\| \epsilon_t - \epsilon_{\theta}(x_t,t) - \hat{\sigma}_t^2 \gamma \nabla_{x_t} \log p_{\phi}(y = \mathcal{T}|x_t) \right\|^2 \right\|$

Adversarial noise selection dynamically choose the noise

 $(x_t, t) - \hat{\sigma}_t^2 \gamma \nabla_{x_t} \log p_\phi(y = \mathcal{T}|x_t) ||^2$

The 10-shot image generation samples on LSUN Church \rightarrow Landscape drawings (top) and FFHQ \rightarrow Raphael's paintings (bottom). When compared with other GAN-based and DDPMbased methods, our method, ANT, yields highquality results that more closely resemble images of the target domain style, with less blurring.

Quantitative Evaluation

Intra-LPIPS results for both DDPM and GAN-based baselines are presented for 10-shot image generation tasks.

	Parameter Rate	$\begin{array}{c} \text{FFHQ} \rightarrow \\ \text{Babies} \end{array}$	$FFHQ \rightarrow$ Sunglasses	FFHQ \rightarrow Raphael's paintings	LSUN Church \rightarrow Haunted houses	LSUN Church \rightarrow Landscape drawings
	$100\% \\ 100\%$	$0.510 {\pm} 0.026$ $0.546 {\pm} 0.033$	0.550 ± 0.021 0.571 ± 0.034	$0.533 {\pm} 0.023$ $0.546 {\pm} 0.037$	$0.585 {\pm} 0.007$ $0.615 {\pm} 0.018$	$0.601{\pm}0.030$ $0.643{\pm}0.060$
	100% 100% 100%	$0.560 {\pm} 0.019$ $0.583 {\pm} 0.014$ $0.579 {\pm} 0.018$	$0.550 {\pm} 0.014$ $0.581 {\pm} 0.011$ $0.574 {\pm} 0.007$	0.541 ± 0.023 0.564 ± 0.010 0.558 ± 0.033	0.579 ± 0.035 0.620 ± 0.029 0.616 ± 0.043	$0.596 {\pm} 0.052$ $0.674 {\pm} 0.024$ $0.626 {\pm} 0.021$
Ours)	100% 1.3%	0.599 ± 0.024 0.592 ± 0.016	0.604 ± 0.014 0.613 ± 0.023	0.581±0.041 0.621 ±0.068	$0.628 {\pm} 0.029$ $0.648 {\pm} 0.010$	$0.706 {\pm} 0.030$ $0.723 {\pm} 0.020$
urs)	1.6%	0.601 ±0.018	0.613 ±0.011	$0.592 {\pm} 0.048$	0.653 ±0.010	0.738 ±0.026

Visualization on Toy Data

(a) Gradient of Output Layer

(b) Heat-map of DDPM

