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Qualitative Evaluation

Unbalance Transter Result

The 10-shot image
generation samples on
LSUN Church —

Landscape drawings (top)
and FFHQ — Raphael's
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Two sets of images generated from corresponding fixed noise inputs at different stages of fine-tuning
DDPM from FFHQ to 10-shot Sunglasses. When the bottom 1mage successfully transfers to the
target domain, the top image 1s already overfitting.
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* Estimating the transfer direction for each timesteps
of Diffusion Models training to boosting the transfer.

Quantitative Evaluation

Our Method

Intra-LPIPS results for both DDPM and GAN-based
baselines are presented for 10-shot 1image generation tasks.

* Similarity-guided training employs a classifier to estimate the
divergence between the source and target domains, leveraging
existing knowledge from the source domain to aid in training the =~ ™" Rae
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Searching the targeted domain related noise instead
of mechanism noise 1n diffusion models training for
less 1teration.

target domain.
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Contribution * Adversarial noise selection dynamically choose the noise

according to the input 1image.

ANT: an efficient fusion method leverage existing
knowledge from the source domain to aid in training
the target domain

Experiments on few-shot image generation tasks
affirm the effectiveness of our ANT.
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Visualization on Toy Data

(a) Gradient of Output Layer

(b) Heat-map of DDPM

(c) Heat-map of DDPM-ANT



