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Bottleneck in Fine-Tuning LL.Ms

e Memory becomes a bottleneck when fine-tuning billion-sized LLMs
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[1] Malladi et al. Fine-Tuning Language Models with Just Forward Passes. NeurIPS, 2023.
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MeZO [1]: zeroth-order methods
with only forward passes
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Bottleneck in Fine-Tuning LL.Ms

e High quality data are often private
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[2] Carlini et al. Extracting Training Data from Large Language Models. USENIX Security Symposium, 2021.



Bottleneck in Fine-Tuning LL.Ms

e High quality data are often private — fine-tuning with (e,d)-Differential Privacy

Private data Do \OR/
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Private and Zeroth-Order Optimization
for LLMs Fine-Tuning



Gap Between Theory and Practice

minimize, Fg(x) := % Z f(z; &)

=1

Theory Practice

Convergence rates of both
private first-order optimization They perform well on LLMs fine-tuning with
non-private zeroth-order optimization dimension scaling to billions

depend on the dimension



Non-Private Zeroth-Order Optimization
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Non-Private Zeroth-Order Optimization
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[1] Malladi et al. Fine-Tuning Language Models with Just Forward Passes. NeurIPS, 2023.
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Private First-Order Optimization: DP-GD
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Private First-Order Optimization: DP-GD
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Private First-Order Optimization: DP-GD

1 — .. C
Tir1 € Ty — a(EZChpc(Vf(wt;&))+;zt)
1=1

Theory Practice
® (g,0)-differential privacy with
Model BLEU BLEU (DP) Drop
ze ~ N (0, (41/2T log(1.25/6) /€)*Taxq) QPT2-(345M)  47.1 42.0 5.1
GPT2-(774M)  47.5 43.1 4.4
GPT2-(1.5B)  48.1 43.8 4.3

IVFEs(z)? < V/d log(1/9)

ne (e =6.8,0 = 1le-5) on DART

[3] Yu et al. Differentially Private Fine-Tuning of Language Models. ICLR, 2022.



Low-Dimensional Structure

Effective Rank

+  estimated values

—— linear fit: logy = — 0.61logx — 0.18 (R? = 0.987)

10°
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Tr(H) <r||H]:

e Not necessarily low rank
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o o' o P e Recover smoothness when » = d

[4] Lietal. When Does Difterentially Private Learning Not Suffer in High Dimensions. NeurIPS, 2022.



Dimension-Independent
Private and Zeroth-Order Optimization
under Low Effective Rank Structure




First Attempt: DPGD-0th
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First Attempt: DPGD-0th
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DPZero: Dimension-Independent

No need to add noise to the update direction

1 - : €z +)\’U,, i) — x —)\’U,; i
Tiy1 — Ty — a(;Zchpc(f( L : 5)2)\f( ¢ t; i)
i=1 ;

(approx.) directional derivative

scalar noise
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e No need to add noise to the update direction
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DPZero: Dimension-Independent

e No need to add noise to the update direction
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(approx.) directional derivative scalar noise

| VdL worst-case

C~L

e Under effective rank structure

rlog(1/9)

ne

E[||VFs(z:)|I’] S ((Fs(zo) — F§)+ L?)




DPZero

Algorithm 3 DPZERO

Input: Dataset S = {&;,---,&,}, initialization x, € R¢, number of iterations T, stepsize a > 0,
smoothing parameter A > 0, clipping threshold C' > 0, privacy parameters € > 0,6 € (0, 1).
1: fort=0,1,---, T —1do
2. Sample u; uniformly at random from the Euclidean sphere v/d S41.
3:  Sample z; ~ N (0,0?) with variance o = 4,/2T log(e + (¢/6))/e, and

s < oo (% 3" v (f(sct + Mg &) — flae — Aut;@-)) N %) "

2

Output: z, for 7 sampled uniformly at random from {0,1,--- ,7 — 1}.




Summary of Results

Effective rank: —H < v2 Fs(m) < H

Tr(H) < r|H|2

without effective rank with effective rank r

DPGD-0th dv/d d\/T
DPZERO (log d)Vd (log d)+/T
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Experiments on Synthetic Examples

(e =2,6 =107°)- DP on a quadratic
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Private Fine-Tuning RoBERTa (355M)
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Private Fine-Tuning RoBERTa (355M)

Memory (MiB) of RoBERTa on SST-2

AdamW
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DPZERO

17126
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NORORD

10366 _10496

2668 2668

e DPZero: Nearly no additional cost

v Efficient per-sample loss clipping (v.s. per-sample gradient clipping in DP-GD)
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Private Fine-Tuning OPT
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