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1 Introduction

• Diffusion Models

The advent of diffusion models (Ho et al., 2020) and their extensions has enabled
effective learning of intricate probability measures for image data.
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1 Introduction

• Pre-train large-scale diffusion models: Stable Diffusion, which is trained
utilizing large text-image datasets, for example, the LAION-5B dataset.

Figura: The overview of Stable Diffusion.
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1 Introduction

Stable Diffusion (SD, Rombach et al. (2022)) first map the image data into the latent
probability space, Z0 ∈ Z ⊆ Rd. In the latent space,

- the diffusion process put forward the data to the Gaussian distribution,

Zt =
√
ᾱtZ0 +

√
1− ᾱtη, η ∼ N (0, Id); (1)

- The backward process {Z̃Ctext
t }Tt=1 is used for generation, starting from Z̃T ∼ N (0, Id)

with the following iteration:

Z̃Ctext
t−1 =

1

1− βt

(
Z̃Ctext
t − βt√

1− ᾱt
ϵ∗(Z̃Ctext

t , t, Ctext)

)
+ σtη, (2)

where ϵ∗ is the denoise function and βt := 1− ᾱt/ᾱt−1, σt :=
1−ᾱt−1

1−ᾱt
βt.
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1 Introduction

- According to Tweedie’s formula (Efron, 2011), the denoise model ϵ∗(zt, t, ctext) can be
expressed as

ϵ∗(zt, t, ctext) : = −
√
1− ᾱt∇ log p(Zt = zt | Ctext = ctext)

= E[η | Zt = zt, Ctext = ctext]. (3)

The diversity and abundance of data contributes to the exceptional
generative capabilities of large-scale models ϵ̂.
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1 Introduction

• Domain Adaptation

The aim is to transfer a broader knowledge base acquired from publicly available data
to the task-specific distribution.

- Privacy protection.

- Sensitive medical data.

- User-customized task.

The target 
probability space

The prior 
probability space
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1 Introduction

- In addition to private data, can public data provide more information for
the distribution of private data?

Jian Huang Bayesian Power Steering 8 / 35



1 Introduction

- Alternatively, can the deployment of such pre-trained large-scale models,
in conjunction with the private dataset, effectively facilitate the transition
from a large probability space to a small probability space?

or
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2 Formulation

• Problem Formulation

- The latent probability space Z := (Ω,F,P) be the generative target of the pre-trained
model.

- Our focus lies on a small latent probability space Z∆ := (∆,∆ ∩ F,P∆), where ∆ ∈ F
and P∆(E) := P(E)/P(∆), for all E ∈ ∆ ∩ F.

Lemma 1. (Chung, 2001) If ∆ ∈ F, then there exists some measurable function ψ(·)
such that ∆(ω) = ψ(Z0) for any ∆(ω) := ω ∈ ∆ ∩ F.
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2 Formulation

Consequently, when the data z0 ∈ ∆ aligns with suitable conditions c, the task of
learning a “small distribution”is formulated as learning a probability measure
of Z0 | C, where C is a random variable defined in C := (ψ(∆),ψ(F),P ′) ⊆ Rk.
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2 Formulation

• Bayesian Formulation

Suppose condition (ctext, cadd) ∈ C provides a detailed characterization of the target
domain

- our primary objective is to learn the integrated denoise function, denoted as

ϵ̄∗(zt, t, ctext, cadd) := E[η | zt, ctext, cadd].

- By Bayes’ theorem, we have

p(zt | ctext, cadd) =
p(cadd | zt, ctext)
p(cadd | ctext)

p(zt | ctext).

- To take advantage of the pretrained model ϵ∗(zt, t, ctext) := E[η | zt, ctext], we have

ϵ̄∗(zt, t, ctext, cadd) = −
√
1− ᾱt[∇ log p(cadd | zt, ctext) +∇ log p(zt | ctext)]

= −
√
1− ᾱt∇ log p(cadd | zt, ctext) + ϵ∗(zt, t, ctext).
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2 Formulation

- Alternatively, can the deployment of such pre-trained large-scale models, in
conjunction with the private dataset, effectively facilitate the transition from a large
probability space to a small probability space?

Yes! Through a Bayesian fine-tuning approach!

(a) The ground truth. 

(c) Fine-tuned Pre-trained Model for Generation (d) Training from Scratch for Generation(b) Pre-trained Model-Based Generation
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3 Methodology

• Bayesian Power Steering (BPS)

𝐶!""

BPS𝑇

CP TP EP

𝑍#, 𝑇

CLIP 
encoder𝐶$%&$ Pre-trained 

denoise model
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3 Methodology

• Bayesian Power Steering (BPS)

𝐶!""

BPS𝑇

CP TP EP

𝑍#, 𝑇

CLIP 
encoder𝐶$%&$ Pre-trained 

denoise model

- Head-heavy and foot-light configuration. 
• Architecture Design

𝐶!""𝑡
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- Differentiated integration structure.
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ℒ' = 𝔼(*,),𝝐,𝒄+,,[∥ 𝝐 − 5𝝐,𝜽,𝝓(𝒛), 𝑡, 𝒄)./), 𝒄!"") ∥0
0]

• Optimization Process

𝒄)./)

i. a generalized overview

ii. a object description

iii. a detailed portrayal of the objects and 
their states
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4 Experiments

• Diverse applications, including (Figure (a)) layout-to-image, (Figure (b))
sketch-to-image, (Figure (c)) segmentation-to-image, and even (Figure (d))
multi-conditional tasks (e.g., with style and line constraints).

(a)

(b)

(c)

(d)
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4 Experiments

- layout-to-image task.

𝐶!""

Class label
2: Bus
6: Bicycle
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4 Experiments

• Comparison

Jian Huang Bayesian Power Steering 24 / 35



4 Experiments

Tabela: Quantitative comparison: Stable Diffusion (Rombach et al., 2022), ControlNet (Zhang
et al., 2023), T2I-Adapter (Mou et al., 2023) and our BPS.

SD ControlNet T2I-Adapter Ours

FID ↓ 20.59 19.41 18.39 10.49
CLIP Score ↑ 0.2647 0.2361 0.2642 0.2614
Quality↑ / 1.77 1.868 2.38
Fidelity↑ / 1.53 1.95 2.52
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4 Experiments

• Ablation Study

— Architecture.

Our study utilizes a pretrained
model ϵθ̂ based on the U-net
architecture. This architecture
consists of an encoder (E.), a middle
block (MB.), a skip-connected
decoder (D.), and skip-connections
between the encoder and decoder
(E-D.).

Tabela: Schemes for integrating residual
structures across various hierarchical levels of
the feature space.

Mode E. MB. D. E-D.

ALL
√ √ √ √

EMD
√ √ √

×
E

√
× × ×

EM
√ √

× ×
D × ×

√
×

MD ×
√ √

×
E-D × × ×

√

ME-D ×
√

×
√

M ×
√

× ×
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4 Experiments

(a) Generation of multimodal 2D data.

Figura: Classification accuracy of generated
samples from distinct integration modes.

Jian Huang Bayesian Power Steering 27 / 35



4 Experiments

Robustness analysis of the
integrated Models of
distinct modes with
respect to sample size and
number of iterations. The
horizontal coordinate is
the number of epochs and
the vertical coordinate is
the accuracy.
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4 Experiments

(b) Segmentation-to-image.

For this task, the performance is assessed using the ADE20K dataset (Zhou et al., 2017).
The conditioning fidelity is evaluated through Mean Intersection-over-Union (mIoU).

Tabela: Evaluation of semantic segmentation label reconstruction with mIoU ↑.

ALL EMD EM ME-D MD BPS

0.351 0.351 0.350 0.163 0.240 0.366
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4 Experiments

— Fusion with prompt information.
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4 Experiments

— Implication of time-step information and the training efficiency.

In the sketch-to-image task, we conduct a controlled experiment by setting the time
input of BPS to a constant value. The figure below shows the convergence of models.
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4 Experiments

— Data scarcity.

To assess the model’s generalization ability in scenarios with limited data, we randomly
select subsets of 40, 320, 2562, 20500, and 164K images from the training and validation
sets for fine-tuning.

(a) 164K (b) 20.5K (c) 2562 (d) 320 (e) 40
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4 Experiments

— Intervention ability.

Explore the significant influence of the intervention weights (wi, where 1 ≤ i ≤ 21)
within the BPS framework on the outcomes of the interventions. Specifically, decreasing
these weights contributes to an increase in diversity among the generated results.

(a) ×1 (b) ×0.5 (c) ×0.25

(a) ×1 (b) ×0.8 (c) ×0.5
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