
Sparse Meta-Tuning

1Chen et. al, Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts, ICML 2024
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Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Few-shot learning

For each testing FSL task 
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Two typical approaches:
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• Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Meta-training Pre-trainingFSL testing FSL testing

For each training FSL task For each testing FSL task For each testing FSL task E.g. contrastive learning

Max. Sim.

M
in

. 
S

im
 



4

Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:
• Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
• Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Meta-training FSL testing

For each training FSL task For each testing FSL task 

Challenges:

• Difficult optimization: …second-order 
optimization…high complexity…from 
scratch…

• Suboptimal performance: typically get 
outperformed by transfer-learning 
approaches… especially nowadays in the era 
of big data and foundation models
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• Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example
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Challenges:

• Misaligned objectives between pre-training 
and downstream FSL …

• Therefore, FSL performance can still be 
unsatisfactory / suboptimal…
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Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:
• Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
• Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Our interest: combine the best from both ends
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Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:
• Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
• Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Our interest: combine the best from both ends
• Meta-tuning: meta-training starting from a pre-trained model

Pre-training Meta-training

For each training FSL task 
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PMF: a previous approach

PMF† ≡ Pre-train (DINO) → Meta-train (ProtoNet) → Fine-tune
• Simple-yet-effective: the state-of-the-art approach on the Meta-dataset benchmark

†
Hu et. al, Pushing the Limits of Simple Pipelines for Few-Shot Learning, CVPR 2022
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PMF: a previous approach

PMF† ≡ Pre-train (DINO) → Meta-train (ProtoNet) → Fine-tune
• Simple-yet-effective: the state-of-the-art approach on the Meta-dataset benchmark
• However, it still suffers from two major drawbacks

†
Hu et. al, Pushing the Limits of Simple Pipelines for Few-Shot Learning, CVPR 2022

Improved ID generalization performance

But, at a significant cost of OOD performance

Meta-overfitting
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PMF: a previous approach

PMF† ≡ Pre-train (DINO) → Meta-train (ProtoNet) → Fine-tune
• Simple-yet-effective: the state-of-the-art approach on the Meta-dataset benchmark
• However, it still suffers from two major drawbacks

†
Hu et. al, Pushing the Limits of Simple Pipelines for Few-Shot Learning, CVPR 2022

Task interference

Improved overall generalization performance

But, the improvement scales less-well with more 
meta-training datasets
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How can we improve it?

Our goal: a meta-tuning method that pushes toward the ID/OOD performance Pareto front

Sparse MeTa-Tuning (SMAT) key ideas:
1. Meta-learn sparsely interpolated experts:  

• Sparse weight interpolation finds optimal ID and OOD performance
2. Mixture-of-expert (MoE)-inspired model: 

• A balanced point between fully task-agnostic and task-specific

†
Hu et. al, Pushing the Limits of Simple Pipelines for Few-Shot Learning, CVPR 2022
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Wortsman et. al, Robust fine-tuning of zero-shot models, CVPR 2022
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How can we improve it?

Sparse MeTa-Tuning (SMAT) key ideas:
1. Meta-learn sparsely interpolated experts:  

• Sparse weight interpolation finds optimal ID and OOD performance
2. Mixture-of-expert (MoE)-inspired model: 

• A balanced point between fully task-agnostic and task-specific

E.g., PMF
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SMAT: overview 
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SMAT: meta-training

Task-specific expert merging
• |ℳ| distinct sparse experts, (𝒛𝑚 ⊙𝜽𝜹)
• a common merging rule defined by a 

hypernetwork that outputs task-specific expert 
distribution 𝜶𝑖 based on the task support set.

Meta-learn sparse reparameterization
• {𝒛𝑚}:  distinct, sparse, binary gates ∈ 0,1 |𝜃|

• 𝜽𝜹: a shared, dense reparameterization
• Thus, meta-learn 𝒛𝑚 end-to-end effectively 

discover where-to-share and where-to-specialize.
• No bias as in hand-crafted task-specific/task-

agnostic partition

Interpolation between common 𝜽𝒑𝒓𝒆 and 𝜽𝜹

• Sparsity of {𝒛𝑚}(also 𝛼𝑖) controls the relative 
interpolation strength

• {𝒛𝑚} define the big picture:
• More 1s = More like the meta-tuned model
• More 0s = More like the pre-trained model

• 𝛼𝑖 allows local, task-specific variation:
• Different expert distribution across tasks
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SMAT: meta-training

Task-specific dense teachers
• 𝜽𝒊

𝒕𝒓: a unconstrained, highly task-specific teacher
• 𝜽𝒊: merged model, implicitly constrained by sparsity 

constraints on individual experts.
• Knowledge distillation enforces the student to mimic 

the teacher, therefore encourages specialization and 
cooperation among experts.
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SMAT: meta-training

Everything together into a Lagrangian

𝑸𝝓𝒎
: The CDF of the variational distribution for optimization 𝒛𝒎

We share the sparsity constraint 𝝉 for all experts for simplicity
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SMAT: inference

Direct inference without fine-tuning
• Predict query labels by constructing a ProtoNet

(Nearest class-centroid) classifier with 𝜽𝑖 and the 
labelled support set 

With gradient-based fine-tuning
• Employ any off-the-shelf fine-tuning techniques 

(e.g., full, LoRA) to fine-tune the model on the 
support set using 𝜽𝑖 as an initialization.
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Experimental results

Comparing with the SOTA on Meta-dataset 
• SMAT (Ours) outperforms baselines under all evaluation scenarios
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More analysis

The roles of sparsity level 𝝉 for SMAT
1. Sparsity level establishes a trade-off between ID and OOD generalization performance
2. Appropriate sparsity level encourages expert specialization
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More analysis

The roles of sparsity level 𝝉 for SMAT
1. Sparsity level controls the trade-off between ID and OOD performance
2. Appropriate sparsity level encourages gradient alignment between tasks

Higher sparsity

Lower sparsity
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Qualitative visualization
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More ablation study

Performance vs scale for different models Ablation experiments


	Slide 1: Sparse Meta-Tuning
	Slide 2: Problem of interest
	Slide 3: Problem of interest
	Slide 4: Problem of interest
	Slide 5: Problem of interest
	Slide 6: Problem of interest
	Slide 7: Problem of interest
	Slide 8: PMF: a previous approach
	Slide 9: PMF: a previous approach
	Slide 10: PMF: a previous approach
	Slide 11: PMF: a previous approach
	Slide 12: How can we improve it?
	Slide 13: How can we improve it?
	Slide 14: How can we improve it?
	Slide 15: SMAT: overview 
	Slide 16: SMAT: meta-training
	Slide 17: SMAT: meta-training
	Slide 18: SMAT: meta-training
	Slide 19: SMAT: meta-training
	Slide 20: SMAT: meta-training
	Slide 21: SMAT: inference
	Slide 22: Experimental results
	Slide 23: More analysis
	Slide 24: More analysis
	Slide 25: Qualitative visualization
	Slide 26: More ablation study

