Sparse Meta-Tuning

Chen et. al, Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts, ICML 2024



B Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples
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[ Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:
* Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
* Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

s'\
9)
> ® \(\0\)&
K
>
Q%\/ .\4@ ‘s\rb
N o2 A&
N <& % @ N
\/'b \(’b\(\ ?‘6‘:@ ‘é\Qe
. Q,\'b, N @
(\boi&\o‘\ W ¥ 60‘(\ '8\\0(\ S
\0\ \(‘\\\3
Meta-training FSL testing Pre-training FSL testing
For each training FSL task For each testing FSL task E.g. contrastive learning For each testing FSL task
e g ~
> - ™ / N T e )
,((\06 ,\rzﬁ* N '\%9\56@\ '\'69\(\6 /\@%‘“ Qo<\' ’\,OG.\,(‘ BN ,\fbe\’{\ N Max. Sim. < Q°<\ ,\(b‘boée\ ’\?’\@ﬂ
R . KNS ® o S
° &
L & 5
o < Q( ’ <> Q‘e
X
R
N\
&

N & RN Y, N VAN Y,




[ Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:

* Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
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Challenges:

Difficult optimization: ...second-order
optimization...high complexity...from
scratch...

Suboptimal performance: typically get
outperformed by transfer-learning
approaches... especially nowadays in the era
of big data and foundation models




[ Problem of interest

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples
Two typical approaches:

* Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example
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* Therefore, FSL performance can still be
unsatisfactory / suboptimal... Pre-training FSL testing
E.g. contrastive learning For each testing FSL task
- N S
Max. Sim. '\‘bc‘\’{\ N '\'b%(\b“"\ <% o
O & «® o
.
o 0 «

- AN /




B Problem of interest

Our interest: combine the best from both ends




B Problem of interest

Our interest: combine the best from both ends
* Meta-tuning: meta-training starting from a pre-trained model
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' PMEF: a previous approach

PMFT = Pre-train (DINO) — Meta-train (ProtoNet) = Fine-tune
* Simple-yet-effective: the state-of-the-art approach on the Meta-dataset benchmark

T Hu et. al, Pushing the Limits of Simple Pipelines for Few-Shot Learning, CVPR 2022



' PMEF: a previous approach

PMFT = Pre-train (DINO) — Meta-train (ProtoNet) = Fine-tune

* However, it still suffers from two major drawbacks

Meta-overfitting Task interference
g 73 —_— 1.15
© 0 T PMF All
8 7 S 5 —e— SMAT All
O 65 SMAT w/o dense teachers 5 by 1.1 PMF OOD /
2 —— SMAT (ours) o < -&- SMAT 00D
< 60 EP
wn + 1.05
v Y P =" i
86 ~a -
8 I g - Pretrained performance
© g5 __Target performance _——_ _ , 1 =3 LS O A T, o S Y O SO NN N
&) o 5% speedup T =
o 84 43% speedup o
<>E 0.95
83 Increasing meta-tuning tasks diversiry
0 10k 20k 30k 40k 50k & & o ©
Training tasks e 9 <° &
S o S
N2 % &
\‘iﬁ} SN
W QO

T Huet. al, Pushing the Limits of Simple Pipelines for Few-Shot Learning, CVPR 2022




' PMEF: a previous approach

PMFT = Pre-train (DINO) — Meta-train (ProtoNet) = Fine-tune

Meta-overfitting
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' PMEF: a previous approach

PMFT = Pre-train (DINO) — Meta-train (ProtoNet) = Fine-tune

Task interference
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B How can we improve it?

Our goal: a meta-tuning method that pushes toward the ID/OOD performance Pareto front

Sparse MeTa-Tuning (SMAT) key ideas:
1. Meta-learn sparsely interpolated experts:

 Sparse weight interpolation finds optimal ID and OOD performance
2. Mixture-of-expert (MoE)-inspired model:

A balanced point between fully task-agnostic and task-specific

T Hu et. al, Pushing the Limits of Simple Pipelines for Few-Shot Learning, CVPR 2022



B How can we improve it?

Sparse MeTa-Tuning (SMAT) key ideas:
1. Meta-learn sparsely interpolated experts:
 Sparse weight interpolation finds optimal ID and OOD performance
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B How can we improve it?

Sparse MeTa-Tuning (SMAT) key ideas:

2. Mixture-of-expert (MoE)-inspired model:
 Abalanced point between fully task-agnostic and task-specific

Fully task-agnostic Fully task-specific
E.g., PMF . E.g., Task experts
Partitioned:
task-specific & task-agnostic
E.g., SMAT
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"B SMAT: overview

Shared knowledge pool () Trainable parameters () Loss

Sparsity constraint
(per expert)
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"B SMAT: meta-training

Shared knowledge pool

Sparsity constraint
(per expert)
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( ) Create task model through interpolation
of experts and (frozen) foundation model

Task-specific expert merging

| M| distinct sparse experts, (z,,, © 6°)

a common merging rule defined by a
hypernetwork that outputs task-specific expert
distribution a; based on the task support set.

Meta-learn sparse reparameterization

{z,,}: distinct, sparse, binary gates € [0,1]!°!

09: a shared, dense reparameterization

Thus, meta-learn z,,, end-to-end effectively
discover where-to-share and where-to-specialize.
No bias as in hand-crafted task-specific/task-
agnostic partition

Interpolation between common 6P7¢ and 6°

Sparsity of {z,,, }(also a;) controls the relative
interpolation strength
{z,,} define the big picture:
* More 1s = More like the meta-tuned model
* More Os = More like the pre-trained model
a; allows local, task-specific variation:

* Different expert distribution across tasks



"B SMAT: meta-training

Shared knowledge pool

Sparsity constraint
(per expert)
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"B SMAT: meta-training

(1) Compute task-specific expert distribution
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( ) Create task model through interpolation * More 1s = More like the meta-tuned model
of experts and (frozen) foundation model *  More 0s = More like the pre-trained model

a; allows local, task-specific variation:

» Different expert distribution across tasks



"B SMAT: meta-training

Sparsity constraint
(per expert)

#(z,, = 0)
[ dim(z,, ) 2 Tm ]

Task-specific dense teachers

0?: a unconstrained, highly task-specific teacher

0;: merged model, implicitly constrained by sparsity
constraints on individual experts.

Knowledge distillation enforces the student to mimic
the teacher, therefore encourages specialization and
cooperation among experts.

() Trainable parameters () Loss

(] Frozen parameters ---= Training only

(4) Train teacher and add distillation loss
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"B SMAT: meta-training

Sparsity constraint () Trainable parameters () Loss

(per expert) C] Frozen parameters ---= Training only
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(3) Compute task loss
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B SMAT: inference

Shared knowledge pool
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expert con struction

Direct inference without fine-tuning

* Predict query labels by constructing a ProtoNet
(Nearest class-centroid) classifier with 8; and the

(Z 0 © 60°) : labelled support set

With gradient-based fine-tuning

*  Employ any off-the-shelf fine-tuning techniques

(e.g., full, LoRA) to fine-tune the model on the
support set using 8; as an initialization.

Create task model through interpolation
of experts and (frozen) foundation model




B Experimental results

Comparing with the SOTA on Meta-dataset
 SMAT (Ours) outperforms baselines under all evaluation scenarios

Table 1. Few-shot testing results on the Meta-dataset benchmark and additional OOD testing datasets for methods using DINO-ViT-Small
backbone. T and * respectively indicate published results in (Hu et al., 2022) and *(Basu et al., 2023). Gray indicates our method.

w/o fine-tuning with gradient-based fine-tuning
Datasets fPre  TPMF SoftMerge SMAT ‘Pre+full TPMF+full SoftMerge+full SMAT+full fPre+LoRA PMF+LoRA SMAT+LoRA
ImageNet 73.48 73.54 74.33 74.94 73.54 74.59 74.71 75.24 74.22 73.54 T
Aircraft 62.17 88.33 88.80 89.49 754 88.33 90.6 90.78 80.8 89.75 90.71
Omniglot 54.33  91.79 91.24 89.54 78.7 91.79 92.01 90.83 80.8 92.78 90.99
CUB 85.37 91.02 91.54 92.48 854 91.02 91.95 92.48 85.8 91.17 92.42
DTD 83.67 81.64 80.98 85.86 86.9 86.61 86.84 88.34 86.8 86.73 88.28
Quickdraw 60.59 79.23 78.98 78.83 73.6 79.23 79.90 78.83 72.7 79.23 78.83
Fungi 56.26  74.2 72.40 72.8 54.7 74.20 72.40 72.80 59.8 75.44 72.80
VGGFlower 94.45 94.12 96.89 97.19 94.2 94.12 97.01 97.19 94.8 96.05 97.25
ID Avg 71.29 84.23 84.40 85.14 77.81 84.99 85.56 85.81 79.47 85.59 85.88
TrafficSig 53.7 54.37 56.21 58.51 87.3 88.85 8991 90.83 88.1 89.14 90.18
MSCOCO 54.58 57.04 55.75 57.35 61.5 62.59 62.15 63.07 62.1 61.71 63.38
Cifarl0 85.64 80.82 84.58 83.95 92.48 89.61 01.84 92.08 93.33 01.53 92.46
Cifar100 76.86 69.11 70.85 74.85 86.13 82.54 85.88 85.91 86.17 85.06 85.88
MNIST 78.57 93.33 94.16 94.53 92.54 96.44 96.20 96.73 94,98 96.41 96.46
Sketch 4725 41.10 43.30 48.91 56.39 49.65 53.85 56.55 57.34 47.59 55.63
Food 91.73 91.37 89.84 92.31 92.03 91.73 9048 92.31 92.06 92.01 92.31
Clipart 55.19 53.92 54.83 59.87 67.18 62.83 65.50 65.76 66.51 60.6 66.07
Pet 62.64 61.89 63.04 65.59 65.08 62.97 63.36 67.43 65.06 62.71 67.77
Cars 3458 38.00 36.21 36.79 40.98 40.07 41.62 42.39 39.49 42.37 40.05

OOD Avg 64.07 64.10 64.87 67.27 74.16 72.73 74.08 75.31 74.51 7291 75.02




B More analysis

The roles of sparsity level T for SMAT
1. Sparsity level establishes a trade-off between ID and OOD generalization performance
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B More analysis

The roles of sparsity level T for SMAT

2.

Appropriate sparsity level encourages gradient alignment between tasks
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are calculated w.r.t. the parameters shown in the legend.




I Qualitative visualization
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"B More ablation study

Performance vs scale for different models Ablation experiments

> O v Table 2. Ablation studies on different components of SMAT. MLS
g 74 = meta-learned sparsity, Meta: Meta-training using support anc
§ O query splits (otherwise no split), DT: dense teachers. IE: interpo
72 lated experts
= ID Mobper. MLS META DT IE ID 00D  AveG
- Al il | SMAT ¢ v/ v/ 8514 6121 7521
@ "0 Y- Sxperts 2 /v X / 8507 6644 74.74
© @ - portio 3 v/ v/ X 8477 67.02 74.90
S 68 e 4 v/ X v/ / 8235 6364 7195
< 0 @ Pretrained 5 X v/ X 8521 6621 74.75
20 40 60 80 100 120 140 6 PMF X X X X 8423 64.09 73.05

Parameter counts (M)
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