Sparse Meta-Tuning

Chen et. al, Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts, ICML 2024

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:

- Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
- Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:

- Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
- Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Challenges:

- **Difficult optimization:** ...second-order optimization...high complexity...from scratch...
- Suboptimal performance: typically get outperformed by transfer-learning approaches... especially nowadays in the era of big data and foundation models

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:

- Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
- Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Challenges:

- Misaligned objectives between pre-training and downstream FSL ...
- Therefore, FSL performance can still be unsatisfactory / suboptimal...

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:

- Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
- Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Our interest: combine the best from both ends

Few-shot classification (FSL): learning a model to perform classification from a few labelled examples

Two typical approaches:

- Meta-learning: train from scratch over labelled few-shot task episodes by maximizing the FSL objective
- Transfer-learning: finetune a powerful pre-trained model directly on the few labelled example

Our interest: combine the best from both ends

• Meta-tuning: meta-training starting from a pre-trained model

PMF[†] \equiv **P**re-train (DINO) \rightarrow **M**eta-train (ProtoNet) \rightarrow **F**ine-tune

• **Simple-yet-effective**: the state-of-the-art approach on the Meta-dataset benchmark

PMF[†] \equiv **P**re-train (DINO) \rightarrow **M**eta-train (ProtoNet) \rightarrow **F**ine-tune

- Simple-yet-effective: the state-of-the-art approach on the Meta-dataset benchmark
- However, it still suffers from two major drawbacks

Meta-overfitting

Task interference

PMF[†] \equiv **P**re-train (DINO) \rightarrow **M**eta-train (ProtoNet) \rightarrow **F**ine-tune

- Simple-yet-effective: the state-of-the-art approach on the Meta-dataset benchmark
- However, it still suffers from two major drawbacks

Meta-overfitting

- Improved ID generalization performance
- But, at a significant cost of OOD performance

PMF[†] \equiv **P**re-train (DINO) \rightarrow **M**eta-train (ProtoNet) \rightarrow **F**ine-tune

- Simple-yet-effective: the state-of-the-art approach on the Meta-dataset benchmark
- However, it still suffers from two major drawbacks

Improved overall generalization performance

But, the improvement **scales less-well** with more meta-training datasets

Task interference

Our goal: a meta-tuning method that pushes toward the ID/OOD performance Pareto front

Sparse MeTa-Tuning (SMAT) key ideas:

- **1.** Meta-learn sparsely interpolated experts:
 - Sparse weight interpolation finds optimal ID and OOD performance
- 2. Mixture-of-expert (MoE)-inspired model:
 - A balanced point between fully task-agnostic and task-specific

How can we improve it?

Sparse MeTa-Tuning (SMAT) key ideas:

- **1.** Meta-learn sparsely interpolated experts:
 - Sparse weight interpolation finds optimal ID and OOD performance
- 2. Mixture-of-expert (MoE)-inspired model:
 - A balanced point between fully task-agnostic and task-specific

[†] Wortsman et. al, Robust fine-tuning of zero-shot models, CVPR 2022

How can we improve it?

Sparse MeTa-Tuning (SMAT) key ideas:

- **1.** Meta-learn sparsely interpolated experts:
 - Sparse weight interpolation finds optimal ID and OOD performance
- 2. Mixture-of-expert (MoE)-inspired model:
 - A balanced point between fully task-agnostic and task-specific

SMAT: overview

Task-specific expert merging

- $|\mathcal{M}|$ distinct sparse experts, $(\mathbf{z}_m \odot \boldsymbol{\theta}^{\boldsymbol{\delta}})$
- a common merging rule defined by a hypernetwork that outputs task-specific expert distribution *α_i* based on the task support set.

Meta-learn sparse reparameterization

- $\{z_m\}$: **distinct**, **sparse**, binary gates $\in [0,1]^{|\theta|}$
- $heta^{\delta}$: a **shared**, **dense** reparameterization
- Thus, meta-learn \mathbf{z}_m end-to-end effectively discover where-to-share and where-to-specialize.
- **No bias** as in hand-crafted task-specific/task-agnostic partition

Interpolation between common $heta^{pre}$ and $heta^{\delta}$

- Sparsity of $\{z_m\}$ (also α_i) controls the relative interpolation strength
- $\{\mathbf{z}_m\}$ define the big picture:
 - More 1s = More like the meta-tuned model
 - More 0s = More like the pre-trained model
- α_i allows local, task-specific variation:
 - Different expert distribution across tasks

Task-specific expert merging

- $|\mathcal{M}|$ distinct sparse experts, $(\mathbf{z}_m \odot \boldsymbol{\theta}^{\boldsymbol{\delta}})$
- a common merging rule defined by a hypernetwork that outputs task-specific expert distribution α_i based on the task support set.

Meta-learn sparse reparameterization

- $\{\mathbf{z}_m\}$: distinct, sparse, binary gates $\in [0,1]^{|\theta|}$
- θ^{δ} : a **shared**, **dense** reparameterization
- Thus, meta-learn z_m end-to-end effectively discover *where-to-share* and *where-to-specialize*.
- No bias as in hand-crafted task-specific/taskagnostic partition

Interpolation between common $heta^{pre}$ and $heta^{\delta}$

- Sparsity of $\{z_m\}$ (also α_i) controls the relative interpolation strength
- $\{z_m\}$ define the big picture:
 - More 1s = More like the meta-tuned model
 - More 0s = More like the pre-trained model
- α_i allows local, task-specific variation:
 - Different expert distribution across tasks

Task-specific expert merging

- $|\mathcal{M}|$ distinct sparse experts, $(\mathbf{z}_m \odot \boldsymbol{\theta}^{\boldsymbol{\delta}})$
- a common merging rule defined by a hypernetwork that outputs task-specific expert distribution *α_i* based on the task support set.

Meta-learn sparse reparameterization

- $\{z_m\}$: **distinct**, **sparse**, binary gates $\in [0,1]^{|\theta|}$
- $heta^{\delta}$: a **shared**, **dense** reparameterization
- Thus, meta-learn \mathbf{z}_m end-to-end effectively discover where-to-share and where-to-specialize.
- **No bias** as in hand-crafted task-specific/task-agnostic partition

Interpolation between common $heta^{pre}$ and $heta^{\delta}$

- Sparsity of $\{z_m\}$ (also α_i) controls the relative interpolation strength
- $\{z_m\}$ define the big picture:
 - More 1s = More like the meta-tuned model
 - More 0s = More like the pre-trained model
- α_i allows local, task-specific variation:
 - Different expert distribution across tasks

Task-specific dense teachers

- θ_i^{tr} : a **unconstrained**, highly task-specific teacher
- *θ*_{*i*}: merged model, **implicitly constrained** by sparsity constraints on individual experts.
- **Knowledge distillation** enforces the student to mimic the teacher, therefore encourages specialization and cooperation among experts.

 $\boldsymbol{z}_m \sim q_{\boldsymbol{\phi}_m}; \boldsymbol{\alpha}_i \sim h_{\boldsymbol{\zeta}}(\mathcal{T}_i^s),$

 Q_{ϕ_m} : The CDF of the variational distribution for optimization z_m We share the sparsity constraint au for all experts for simplicity

SMAT: inference

Comparing with the SOTA on Meta-dataset

• SMAT (Ours) outperforms baselines under all evaluation scenarios

	w/o fine-tuning				with gradient-based fine-tuning							
Datasets	[†] Pre	[†] PMF	SoftMerge	SMAT	[‡] Pre+full	[†] PMF+full	SoftMerge+full	SMAT+full	[‡] Pre+LoRA	PMF+LoRA	SMAT+LoRA	
ImageNet	73.48	73.54	74.33	74.94	73.54	74.59	74.71	75.24	74.22	73.54	75.72	
Aircraft	62.17	88.33	88.80	89.49	75.4	88.33	90.6	90.78	80.8	89.75	90.71	
Omniglot	54.33	91.79	91.24	89.54	78.7	91.79	92.01	90.83	80.8	92.78	90.99	
CUB	85.37	91.02	91.54	92.48	85.4	91.02	91.95	92.48	85.8	91.17	92.42	
DTD	83.67	81.64	80.98	85.86	86.9	86.61	86.84	88.34	86.8	86.73	88.28	
Quickdraw	60.59	79.23	78.98	78.83	73.6	79.23	79.90	78.83	72.7	79.23	78.83	
Fungi	56.26	74.2	72.40	72.8	54.7	74.20	72.40	72.80	59.8	75.44	72.80	
VGGFlower	94.45	94.12	96.89	97.19	94.2	94.12	97.01	97.19	94.8	96.05	97.25	
ID Avg	71.29	84.23	84.40	85.14	77.81	84.99	85.56	85.81	79.47	85.59	85.88	
TrafficSig	53.7	54.37	56.21	58.51	87.3	88.85	89.91	90.83	88.1	89.14	90.18	
MSCOCO	54.58	57.04	55.75	57.35	61.5	62.59	62.15	63.07	62.1	61.71	63.38	
Cifar10	85.64	80.82	84.58	83.95	92.48	89.61	91.84	92.08	93.33	91.53	92.46	
Cifar100	76.86	69.11	70.85	74.85	86.13	82.54	85.88	85.91	86.17	85.06	85.88	
MNIST	78.57	93.33	94.16	94.53	92.54	96.44	96.20	96.73	94.98	96.41	96.46	
Sketch	47.25	41.10	43.30	48.91	56.39	49.65	53.85	56.55	57.34	47.59	55.63	
Food	91.73	91.37	89.84	92.31	92.03	91.73	90.48	92.31	92.06	92.01	92.31	
Clipart	55.19	53.92	54.83	59.87	67.18	62.83	65.50	65.76	66.51	60.6	66.07	
Pet	62.64	61.89	63.04	65.59	65.08	62.97	63.36	67.43	65.06	62.71	67.77	
Cars	34.58	38.00	36.21	36.79	40.98	40.07	41.62	42.39	39.49	42.37	40.05	
OOD Avg	64.07	64.10	64.87	67.27	74.16	72.73	74.08	75.31	74.51	72.91	75.02	

Table 1. Few-shot testing results on the Meta-dataset benchmark and additional OOD testing datasets for methods using DINO-ViT-Small backbone. † and ‡ respectively indicate published results in † (Hu et al., 2022) and ‡ (Basu et al., 2023). Gray indicates our method.

More analysis

The roles of sparsity level au for SMAT

- 1. Sparsity level establishes a trade-off between ID and OOD generalization performance
- 2. Appropriate sparsity level encourages expert specialization

(a) Average performance tradeoff on sampled ID vs OOD tasks as a function of (color) expert sparsity level τ , and (marker) number of experts.

More analysis

The roles of sparsity level au for SMAT

- **1.** Sparsity level controls the trade-off between ID and OOD performance
- 2. Appropriate sparsity level encourages gradient alignment between tasks

(a) Average performance tradeoff on sampled ID vs OOD tasks as a function of (color) expert sparsity level τ , and (marker) number of experts.

(b) Meta-gradients alignment between tasks throughout for SMAT with low and high sparsity levels. Meta-gradients are calculated w.r.t. the parameters shown in the legend.

Qualitative visualization

Figure 5. (a-b) Model capacity (i.e., number of non-zero parameters) grouped by *a*): layer types, and *b*): layer depth. (c-d) Expert specialisation. *c*) Dendrogram of task similarity computed on different tasks. *d*) Overlap between masks.

More ablation study

Performance vs scale for different models

Ablation experiments

Table 2. Ablation studies on different components of SMAT. MLS meta-learned sparsity, Meta: Meta-training using support and query splits (otherwise no split), DT: dense teachers. IE: interpo lated experts

ID	MODEL	MLS	Meta	DT	IE	ID	OOD	AVG
1	SMAT	1	1	1	1	85.14	67.27	75.21
2		1	1	×	1	85.07	66.44	74.74
3		✓	✓	1	X	84.77	67.02	74.90
4		1	×	1	1	82.35	63.64	71.95
5		×	1	✓	×	85.21	66.21	74.75
6	PMF	×	×	×	×	84.23	64.09	73.05