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1/7Motivating Example: Bilinear Games

Bilinear game:

min
x∈X

max
y∈Y

f (x , y) := ⟨x ,My⟩Rm + ⟨b, x⟩Rm − ⟨c , y⟩Rn . (1)

Goal:
▶ Find a saddle-point (x∗, y∗) such that,

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x , y∗). (2)
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Figure: Illustration of SGDA, P-SGDA
and COGDA on an example Bilinear
game with f (x , y) = (x − 1) ∗ (y + 1.5).

Stochastic Gradient Descent-Ascent (SGDA)
Compute:

xt+1 = xt − ηx g̃x(t),

yt+1 = yt + ηy g̃y (t).

But,

g̃x(t) = (M + ξM(t)) yt + (b + ξb(t)) ,

and
g̃y (t) = (M + ξM(t))T xt − (c + ξc(t)) .
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Figure: Illustration of SGDA, P-SGDA
and COGDA on an example Bilinear
game with f (x , y) = (x − 1) ∗ (y + 1.5).

SGDA with Projections (P-SGDA)
Compute:

xt+1 = PB(DX ) (xt − ηx g̃x(t)) ,

yt+1 = PB(DY ) (yt + ηy g̃y (t)) .

But, we need further knowledge of (x∗, y∗)
to properly set DX ,DY .
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Figure: Illustration of SGDA, P-SGDA
and COGDA on an example Bilinear
game with f (x , y) = (x − 1) ∗ (y + 1.5).

Composite Objective Gradient Descent Ascent
(COGDA)
Compute:

xt+1 =
xt − ηx g̃ x(t)

1 + ϱxηx
+

ϱxηxx1

1 + ϱxηx
,

yt+1 =
yt + ηy g̃ y (t)

1 + ϱyηy
+

ϱyηyy1

1 + ϱyηy
.

No need for standard assumptions such as:
X Prior knowledge of ∥x∗∥2 (resp. ∥y∗∥2),
X f is G -Lipschitz (with known G ),
X Noise is uniformly bounded or light-tailed.
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For (x∗, y∗) ∈ X × Y,
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Convergence guarantee for COGDA
After at most T iterations, with x1, y1 = 0 as well as ηy , ηx = 1/DM

√
T and

ϱy , ϱx = 2DM/
√
T . Then,
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Our guarantees hold for data-dependent comparators (x∗, y∗),

An approach for Sub-bilinear functions f - which behaves like a bilinear function
asymptotically as one approaches infinity in each axis,

Application to planning in tabular Average-reward Markov Decision Processes
without prior knowledge of the bias span.
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