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upf. Motivating Example: Bilinear Games

Bilinear game:

)'31€|2f' I;]Ea)); f(X7y) = <X, My)R'" + <b7 x>R’" - <C7y>R" . (1)

Goal:
» Find a saddle-point (x*, y*) such that,

F(x"y) < f(xy") < f(x,¥7%). (@)
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gy(t) = (M + SM(t))T Xt — (C + Ec(t)) . Figure: lllustration of SGDA, P-SGDA

and COGDA on an example Bilinear
game with f(x,y) = (x — 1) = (y + 1.5).
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SGDA with Projections (P-SGDA)
Compute:

Xt+1 = Pp(Dy) (xe — nx8x(t)) ,

Yer1 = Py(py) (¥ +1,8y(t)) -

But, we need further knowledge of (x*, y*)
to properly set Dy, Dy.
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Figure: lllustration of SGDA, P-SGDA
and COGDA on an example Bilinear
game with f(x,y) = (x — 1) * (y + 1.5).
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X Pr_'or knc_)WIed_ge of _Hx Iz (resp- [ly”ll2). Figure: lllustration of SGDA, P-SGDA
X fis G-Lipschitz (with known G), and COGDA on an example Bilinear

X Noise is uniformly bounded or light-tailed. game with f(x,y) = (x — 1) = (y + 1.5).
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For (x*,y*) e X x Y,
E[G(x,y7)]
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Convergence guarantee for COGDA
After at most T iterations, with xi, y1 = 0 as well as 1,1, = 1/DMﬁ and

= 20wV Then (13 + lly*[l5 + 1
X y
E[G(x* O 2 2 )
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upf. More details in the paper

v Our guarantees hold for data-dependent comparators (x*, y*),

v~ An approach for Sub-bilinear functions f - which behaves like a bilinear function
asymptotically as one approaches infinity in each axis,

v~ Application to planning in tabular Average-reward Markov Decision Processes
without prior knowledge of the bias span.
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