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Background: Implicit Bias of SGD Noise
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In deep learning, hyperparameters and algorithm choice can influence the
search space explored by the optimization algorithm (implicit bias)

Existing analyses of implicit bias have mostly focused on offline learning
regimes, but deep learning is undergoing a paradigm shift whereby models are
often trained in an online (single-epoch) learning regime with self-supervised
objectives - we study the effect of SGD noise in this regime

90}-----

80

40

20
I

30/
i

10l
0

- - SB-Training
— SB-Testing
- LB -Training

— LB - Testing

I I I
20 40 60 80 100

Epoch

(a) Network F>

100

QO [snarsirny
;

Accuracy

: &

30 ¢

-- SB-
— sB-

Training
Testing
- LB - Training

= LB - Testing

20
0

I
20

I I
40 60 80 100
Epoch

(b) Network C4

Keskar et al. (2017): SB = small batch, LB = large batch.
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Previous work: SGD noise
advantageous for implicit
bias (leads to flatter minima
which generalize better)
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We find that SGD noise does not provide any implicit
bias advantage when learning online.

Our setup: ResNet-18 on CIFAR-5m, ConvNext-T on ImageNet, GPT-2 small on C4.
Offline: SGD noise leads to better implicit bias (small batch size = better)

Online: SGD noise has no implicit bias advantage (large batch size = better)

(* Explicit regularization still has an effect in the online setting, so this isn’t necessarily a
trivial result!)
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Golden Path Hypothesis

*for natural settings!

(a) “Fork in the road” (b) “Golden path”

al) high noise better a2) low noise better

Loss

Different levels of SGD noise results in | Optimization is.sir:n.ilar for
the algorithm exploring distinct parts of | Poth SGD and limiting GD
the search space trajectory
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Golden Path in Loss Space

We want to rule out the possibility that low SGD noise leads us to better, but still distinct
parts of the search space
We run the following experiment:
1. Start two runs— one with high batch size, and one with small batch size—for t steps.
2. Aftert steps, increase the batch size of the second experiment to match the
hyperparameters of the first one, and continue both runs.
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Loss curve of low noise run ‘snaps’ to high -> low noise run after the change.
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Golden Path in Function Space

Are trajectories with different SGD noise functionally similar?

Fork in the road: high noise and low noise trajectories explore different regions, so
functional distance should remain high even after dropping the noise

Golden Path: high noise trajectory follows a ‘noisy’ version of the low noise trajectory,
so functional distance should decrease after dropping the noise
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Golden Path in Function Space

e Are trajectories with different SGD noise functionally similar?
We look at average total variation (TV) distance of models’ softmax probabilities on the
test dataset
e Take the two runs from loss space experiment (one low noise, one high -> low noise)
and report TV distance between two models at the same loss value
o Compare to baseline of two low noise runs trained on different seeds
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Key Takeaways

e We show there is a striking discrepancy between offline and online training
regimes: small batch sizes are not advantageous in terms of implicit bias in
online learning

e We provide evidence in loss and function space that SGD in online learning
settings follows a trajectory similar to full-batch GD, up to deviations due to
noise

e |t may be necessary to reevaluate our comprehension of various deep learning
phenomena in the context of online settings
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