

Online Resource Allocation with Non-Stationary Customers

Overview

We proposed the Unified Learning-while-Earning Algorithm based on Contextual Bandit with Knapsacks to address resource allocation under nonstationary environments.

- Everaged contextual information for informed decisions
- Balanced exploration and exploitation for rapidly changing customer preferences
- ▶ Overcame limitations of stationary environments
- Achieved regret bound of $\tilde{O}(\sqrt{n|\Theta|T})$ under near-i.i.d. arrivals
- ▶ Provided sublinear regret and constant competitive ratio under nonstationary arrivals
- Compared ULwE Algorithm with ALG_{IID} and ALG_{ADV} in experiments, ULwE Algorithm consistently outperformed other algorithms

Problem Setting

Objective: Maximize the total reward obtained from customer clicks or purchases while considering resource budget constraints.

- **n** resources with initial budgets: c_i
- Customer arrival over time horizon: $[0, T]$
- ▶ When a customer arrives, we will observe the context information x^t
- Reject or assign a resource i to the customer
- ▶ Probability function $f_i(x^t, \theta)$: the likelihood of customer purchasing resource j
- ▶ Purchase: the system gets a reward r_i and consumes 1 unit from capacity

Assumption:

- ▶ Distribution: $P(x^t = x^{(l)}) = \mu_l^t$ for customer type $l \in 1, 2, ..., L$
- ► For every customer type $x^{(l)}$, calculate the expected number of arrivals over the time horizon: $\lambda_l = \sum_{t=1}^{T} \mu_l^t$
- All μ_i^t values are unknown, but λ_i is provided based on historical data.

end for

Algorithm 1 Unified Learning-while-Earning (ULwE) Input: $c. T. L$ Initialize $\Omega_i^0 = \Theta_i$ for all $i \in [n]$ for $t = 1$ to T do if switch $=$ FALSE then $I^t = ALG_{LP}(c, T, L, \Omega_i^{t-1})$ Check if conditions for switching are met. if any condition is violated then switch $=$ TRUE. end if else $I^t = ALG_{ADV}(c, T, L, \Omega_i^{t-1})$ end if Check if conditions for updating Ω_i are met. if any condition is violated then Remove $\bar{\theta}^t$ from Ω_t^t else Set $\Omega_i^t = \Omega_i^{t-1}$ for all $i \in [n]$ end if end for Algorithm 2 ALG_{LP} Protocol

Input: c, T, L Initialize $\Omega_i^0 = \Theta_i$ for all $i \in [n]$ for $t = 1$ to T do Solve LP to maximize revenue and obtain \bar{s}^t , $\bar{\gamma}^t$: $\max_{s_{ij}, i \in [n], j \in [L]} \sum_{i \in [n]} r_i \sum_{i \in [L]} \lambda_j s_{ij} \overline{f}_i(x^{(j)}, \Omega_i^{t-1})$ s.t. $\sum_{i\in\{i\}} \lambda_j s_{ij} \bar{f}_i(x^{(j)}, \Omega_i^{t-1}) \leq c_i, \ \forall i\in[n]$ $\sum_{i\in[n]} s_{ij} = 1, \ \forall j\in[L]$ $s_{ij} \geq 0, \ \forall i \in [n], j \in [L].$ Select resource *i* with probability \overline{s}_{iI}

end for

Algorithm 3 ALGADV Protocol Input: c, T, L Initialize $\Omega_i^0 = \Theta_i$ for all $i \in [n]$ for $t = 1$ to T do Observe the context x^t of the new arrival in period t Select $I^t = \arg \max_{i \in [n]} r_i^t \overline{f}_i(x^t, \Omega_i^{t-1})$ where: $r_i^t = r_i \times (1 - \Psi(N_i^{t-1}/c_i))$

Xiaoyue Zhang, Hanzhang Qin, Mabel C. Chou

Main Contribution

Regret bound:

- Near-i.i.d. arrivals scenario: $\tilde{O}(\sqrt{n|\Theta|T})$
- Nonstationary arrivals scenario: sublinear regret with a constant competitive ratio

Numerical Studies

Regret over Time under Near-IID Arrivals

Regret over Time under Adversarial Arrivals

