

Online Resource Allocation with Non-Stationary Customers

Overview

We proposed the Unified Learning-while-Earning Algorithm based on Contextual Bandit with Knapsacks to address resource allocation under nonstationary environments.

- Leveraged contextual information for informed decisions
- Balanced exploration and exploitation for rapidly changing customer preferences
- Overcame limitations of stationary environments
- ► Achieved regret bound of $\tilde{O}(\sqrt{n|\Theta|T})$ under near-i.i.d. arrivals
- Provided sublinear regret and constant competitive ratio under nonstationary arrivals
- Compared ULwE Algorithm with ALG_{IID} and ALG_{ADV} in experiments, ULwE Algorithm consistently outperformed other algorithms

Problem Setting

Objective: Maximize the total reward obtained from customer clicks or purchases while considering resource budget constraints.

- n resources with initial budgets: c_i
- Customer arrival over time horizon: [0, T]
- \blacktriangleright When a customer arrives, we will observe the context information x^t
- Reject or assign a resource j to the customer
- Probability function f_j (x^t, θ) : the likelihood of customer purchasing resource j
- Purchase: the system gets a reward r_j and consumes 1 unit from capacity

Assumption:

- ▶ Distribution: $P(x^t = x^{(l)}) = \mu_l^t$ for customer type $l \in 1, 2, ..., L$
- ► For every customer type $x^{(l)}$, calculate the expected number of arrivals over the time horizon: $\lambda_l = \sum_{t=1}^{T} \mu_l^t$
- All μ_l^t values are unknown, but λ_l is provided based on historical data.

Algorithm 1 Unified Learning-while-Earning (ULwE) Input: c. T. L Initialize $\Omega_i^0 = \Theta_i$ for all $i \in [n]$ for t = 1 to T do if switch = FALSE then $I^t = \mathsf{ALG}_{\mathsf{LP}}(c, T, L, \Omega_i^{t-1})$ Check if conditions for switching are met. if any condition is violated then switch = TRUE. end if else $I^t = \mathsf{ALG}_{\mathsf{ADV}}(c, T, L, \Omega^{t-1}_{i})$ end if Check if conditions for updating Ω_i are met. if any condition is violated then Remove $\bar{\theta}^t$ from Ω_{μ}^t else Set $\Omega_i^t = \Omega_i^{t-1}$ for all $i \in [n]$ end if end for Algorithm 2 ALGLP Protocol In

Input: c, T, L
Initialize
$$\Omega_i^0 = \Theta_i$$
 for all $i \in [n]$
for $t = 1$ to T do
Solve LP to maximize revenue and obtain $\overline{s}^t, \overline{\gamma}^t$:

$$\max_{s_{ij}, i \in [n], j \in [L]} \sum_{i \in [n]} r_i \sum_{j \in [L]} \lambda_j s_{ij} \overline{f}_i(x^{(j)}, \Omega_i^{t-1})$$
s.t. $\sum_{j \in [L]} \lambda_j s_{ij} \overline{f}_i(x^{(j)}, \Omega_i^{t-1}) \le c_i, \forall i \in [n]$

$$\sum_{i \in [n]} s_{ij} = 1, \forall j \in [L]$$

$$s_{ij} \ge 0, \forall i \in [n], j \in [L].$$
Select resource i with probability \overline{s}_{ijt}
end for

Algorithm 3 ALGADV Protocol

Input: c, T, L

```
Initialize \Omega_i^0 = \Theta_i for all i \in [n]
```

for t = 1 to T do

Observe the context x^t of the new arrival in period t Select

$$I^t = \arg \max_{i \in [n]} r_i^t f_i(x^t, \Omega_i^{t-1})$$

where:
$$r_i^t = r_i \times (1 - \Psi(N_i^{t-1}/c_i))$$

Xiaoyue Zhang, Hanzhang Qin, Mabel C. Chou

Main Contribution

Regret bound:

- Near-i.i.d. arrivals scenario: $\tilde{O}(\sqrt{n|\Theta|T})$
- Nonstationary arrivals scenario: sublinear regret with a constant competitive ratio

$$\mathsf{OPT} \le \left(1 + \frac{\left(1 + \min_{i \in [n]} c_i\right) \left(1 - e^{-1/\min_{i \in [n]} c_i}\right)}{1 - 1/e}\right) \mathbb{E}[\mathsf{ALG}] + \tilde{O}(\sqrt{n|\Theta|T})$$

Numerical Studies

Regret over Time under Near-IID Arrivals

Regret over Time under Adversarial Arrivals

