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Intro - Bandit problem

Scenario: At every timestep t € {1,..., T},
The learner chooses a machine A;
and receives reward y: ~ Dp,,
The learner does not know Dg,, and should learn by trials.

Objective: Maximize reward
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Exploration vs Exploitation
m Exploration: spend enough chances to learn each D;

m Exploitation: believe your estimate and try to earn.
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Adding low-rank structure

m Many applications on this bandit problem.
m Naturally, researchers tried to extend it by adding some
structures over it.
m One good candidate is the low-rank structure.
m In many cases, data exhibit low-rank structure.
m We call this problem as a low-rank bandit problem, and has
the following applications.
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Problem Setup

At every time step t € {1,..., T},

The learner chooses an arm A; from the arm set A ¢ R %%
and receives reward y; = (©*, A;) + 1,
m where ©* is an unknown matrix with a known upper bound of
the rank at most r < min(dy, d2).
m 7); is an independent zero-mean o-subgaussian noise
m The inner product of two matrices are defined as
(A, B) = (vec(A),vec(B)) = tr(AT B).
Objective: Minimize its (pseudo-)regret:

;
Reg(T) := T max (", A) —;«9 VA
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Assumptions

Traditional boundedness on arms and ©*, but on || - |op and || - ||nuc

Assumption 1 (operator norm-bounded arm set)

The arm set A C Bop(1) := {A € RAX% : [|Allop < 1}.

Assumption 2 (Bounded norm on reward predictor)

The reward predictor has a bounded nuclear norm: ||©*||puc < S..

In many cases we will use the following weaker assumption than
Assumption 2.

Assumption 3 (Bounded expected reward)

For all A€ A, [(©%, A)| < Rmax.
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Previous Works - generality

m This field has been receiving a lot of attention recently.
m but many of them only deals with specific arm sets.
m Frobenius norm ball A ={M : |M||F <1} [1]
m Symmetric unit vector pairs {vu' : u € St} [6, 8],
m Entrywise canonical actions
A = {ejj : Only (i,j)-th entry is 1, and 0 otherwise} [5, 11, 2]
m Perfectly symmetric and easy to think about exploration.
m In reality, it isn't!
m (e.g.) Finite-armed low-rank bandit - usually arms are 'skewed'.
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Previous Works - estimation perspective

m Estimation: relied on the low-rank estimation literature.
m Traditionally use nuclear norm regularized least squares

(H ' ”nuc—RLS)

t

A(nuc) . B 2
6 = arg  min , 3 (19 45) = 35)" + Al
s=
m These low-rank estimation studies are mainly for offline setting
- the data is given, and the learner just estimates.

m In the setting where the learner collects the data (such as
bandits), experimental designs are also important.
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Previous works - experimental design perspective

m Experimental design: find out appropriate distribution
m € P(A) for optimal estimation.
m It is hard to optimize experimental design for || - ||nuc-RLS!
m Instead: just maximizing minimum eigenvalue [3].

For each distribution 7 over A (i.e., m € P(A)), define its covariance
matrix Q(7) := E,r [vec(a)vec(a) "] = 3, 4 m(a)vec(a)vec(a) .

Clmin (-A) = 7r2173a()§4) )‘min(Q(ﬂ-))'

m or simply assume some nice exploration distribution [9, 4].
m Not enough discussion on the experimental design!
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Question

For low-rank trace regression, can we design estimation
algorithms with experimental designs that can outperform
the classical nuclear norm penalized least squares?
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Contribution

A novel and computationally efficient low-rank
estimation method called LowPopArt .
m We show that the estimation error of LowPopArt is not worse
and can orderwisely better than the classical || - ||nuc-RLS.

A computationally tractable design of experiment
objective B(Q(m)) optimized for LowPopArt .

Two computationally efficient and arm set
geometry-adaptive algorithms using LowPopArt, for
low-rank bandits with general arm sets:

m LPA-ETC (LowPopArt-Explore-Then-Commit), algorithm that
works with fewer assumption.

m LPA-ESTR (LowPopArt-Explore-Subspace-Then-Refine),
strictly better performance compared to SOTA.
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LowPopArt - Assumption

m LowPopArt takes the population covariance matrix Q(7)
as its main input.
m In some settings (such as bandits) where the learner should
also collect data by himself, it is natural.

m LowPopArt also takes the pilot estimator ©¢ and pilot
estimation error bound Ry as input, if possible.
m For the case that we already have an appropriate candidate.
m If one does not have such candidate, one can simply set
@o = Od><d and RO = Rmax-
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LowPopArt - Algorithm

For each sample (A;, Y;), compute one-sample estimator ;.
m Unbiased estimator of ©* — ©

Using {©;}™,, compute the matrix Catoni estimator ©; [10].
m Lightening the tail distribution of singular values.

Run SVD on ©1, and zero out all the singular values which
are under the threshold.
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LowPopArt - Algorithm

Algorithm 5 LowPopArt

1:

b

Input: Samples {4;,Y;}°,, sample size ng, the population covariance matrix of the
vectorized matrix Q (7 ), pilot estimator ©¢ and pilot estimation error bound Ry.
Step 1: Compute one-sample estimators.

sfort=1,...,n0do
Compute O; := Q(m) " 1(Y; — (O, 4;))vec(A;).

: end for

Step 2: Compute the matrix Catoni estimator using {©;}I%
: Compute:

1 no ~
oo i)
1 =0+ - Z v (VvH (reshape (@ ))
i=1 ht
where v = TIRO B(Q)no ln

Step 3: Hard- thresholdlng eigenvalues.

: Let U121V1T be ©1’s SVD. Let il be a modification of X that zeros out its diagonal

(B(Q) In 20)

entries that are at most Ay, := 2(Ro + o) where B(Q) is in Eq. (4).

: Return: Estimator © = U;5,V,.
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Details for step 2 - matrix Catoni estimator [10]

Definition 2 (Catoni's estimator)

Given a symmetric matrix M with its eigenvalue decomposition
M = UANUT where A = diag(\y, - -, Ag), we first define
¢o:R—R as

Jol) = {|og(1+x+x22) if x>0

—log(1 —x+ X;) otherwise
and 1) : RIX9 5 RI*d 5

W(M) = U [diag(o(A), vo(ha). -, vo(A))| UT
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Details for step 2 - matrix Catoni estimator [10]

Definition 3 (Dilation operator)

For any matrix A € RN*%  define the dilation operator
7_[ : Rd1Xd2 - R(d1+d2)><(d1+d2) as

Od]_ ><d1 A

H(A) = AT 0d2><d2

m This method gives an operator norm confidence bound given
the operator norm variance.
m Usually, it relies on the subgaussian proxy rather than variance.
m For more details about how it works, please check [10].
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LE><perimenta| design for LowPopArt

New arm-set-dependent parameter B(Q)

m We found out that the following quantity, B(Q(~)),
determines the variance (from the random arm selection) of
the singular values of the one-sample estimator, ©;.

d2 dl
L (col) (row)
B(Q(r)) := max ()\max <§ DI Amax (3 D
i=1 i=1
d d h diagon
’ i OO LI TI
o | Wf AT T
*******
Dy I I 1 1 1
S el Y
—_ _ 1 row
Q= Ql=| F 1% ih x| pirow —(FH)
PR e R
(col)
BedEiRaRiRbeiRients
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New design of experiment and B (.A)

m One natural experimental design is to ‘minimize variance.’

Brin(4) = _min, B(Q(r) (1)

m Turns out this is a convex optimization.
m Relationship between traditional B(Q(7)) and Amin(Q(7)):

BQ(M)) < 1%

Suppose Assumption 1 holds. Then d? < Bmin(A) < Cd, , and
there exists an arm set Aparq for which Buin(Apard) = Cl, .
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Theoretical guarantee of LowPopArt

Theorem 6 (Theoretical guarantee of LowPopArt )

Suppose that Assumption 1 holds, and LowPopArt is run with arm
set A, sample size ny, and failure rate §. Then its output ©

A

satisfies rank(©) < r and

16 — ©*|lop < O <(cr + Ry) B(Qn(()”))> .

If we optimize by Eq. (1), we can change B(Q(7)) to Bmin(A).
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Warm-LowPopArt

m To avoid the multiplicative Ry term from the estimation.
m Run LowPopArt twice.

m The first phase is to create a pilot estimator © which satisfies
maxac4|(€0 — ©,A)| <o
m The second phase is to finish estimation.

Algorithm 2 Warm-LowPopArt: a bootstrapped version
of LowPopArt
I: Input: Samples {X;, Y;}!"°,, sample size ng, popu-
lation covariance matrix of the vectorized matrix ),
failure rate 4. -
2: ©g + LowPopArt({Xi, YL}Lir n0/2,Q,0d,xdy, Sx,0/2)
30« LowPopArt({ X, YL}ZZ%H’ no/2,Q,0p.0,0/2)

4: Return: ©
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Warm-LowPopArt Analysis

Theorem 7
Suppose that Assumption 1 and 3 hold, and Warm-LowPopArt is
run with arm set A, sample size ng, failure rate §, and

ny >0 (r2B(Q(7r)) . (%R"WV) then its output © is such that

A

rank(©) < r, and:

16 - ©op < 6 <0 BW(””) | @)

no
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How good LowPopArt is compare to || - ||nuc-RLS?

Theoretical estimation error: |6 — O*[lop < o) <¢‘)’2 \F) .

no
m ¢: Compatibility constant, hard to optimize.

m Traditional estimation error (|| - ||nuc-RLS):

A . ~ _ 1
16 - &y = 6 (7€ (A )
In our setting, Crmin 2(A) > d, 50 Cmin *(A) > \/Bmin(A).
Our LowPopArt is always better than traditional
|| - llnuc-RLS approach!
In many cases, LowPopArt is orderwise better

m When A = Be(1), ..l = d? > d*° = /Boin.
m When A - Ahardv Cr'r_un ~ d3 > d1'5 =~ \/m
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New algorithms

If we replace the exploration phases of the existing
experimental-design-based algorithms with our LowPopArt
-based method, it shows significantly better performance!
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LPA-ETC

Algorithm 6 LPA-ETC (LowPopArt based Explore then commit)
1: Input: time horizon 7", arm set .4, exploration lengths ng. regularization
parameter v, pilot estimator O
Solve the optimization problem in Eq. (1) and denote the solution as 7*
fort =1,..., ng do
Independently pull the arm A, according to 7* and receives the reward Y}
end for
Run Warm-LowPopArt({4;, Y; }™,, ng, Q(7*), 6) and get ©
cfort =ng+1,..., T do

oo

(= ]

7
8:  Pull the arm A; = arg max ¢ 4 (6, 4)
9: end for

m This algorithm works with fewer and lenient assumptions

m Needs only Assumption 1 and 3
m No Assumption 2 or A\pin(©*) assumption needed.
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LPA-ETC: Theoretical bound

Theorem 8 (Regret upper bound of LPA-ETC)

Suppose that Assumption 1 and 3 hold, and
T > rBin(A)(ZtEma ) The regret upper bound of LPA-ETC

1/3
with ng = min(T, (02r28min(A) T2 /R,%ax) ) is as follows:

Reg(T) < é((Uszaxr2 TZBmin(A))1/3) (3)
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LPA-ESTR

Algorithm 7 LPA-ESTR (LowPopArt based Explore Subspace Then Refine)

I:
: Solve the optimization in Eq. (1) and denote the solution as 7*.
sfort=1,..., ny do

FNRUS I S

Input: time horizon T, arm set A, exploration lengths 7, singular value lower bound S,

Independently pull the arm A; according to 7* and receives the reward Y}

: end for A . o
: Run Warm-LowPopArt({A4;,Y;}1'° . no, Q(7*),d) and get © with SVD result © = UX} s
: Let I/, and V| be the orthonormal bases of the orthogonal complement subspaces of U and V',

respectively.

: Rotate whole arm feature set A’ := {[[ U JA[V V,]T : A € A}
: Define a vectorized arm feature set so that the last (d; — r)(d2 — r)components are from the

complementary subspaces:

Ao = {(vee(AlL, 1) vee (AL 1y 1:0);

vee

vee( Al 120, Ve Al 1)) 7 A € A}

: Invoke LowOFUL with time horizon T'—ny, arm set A{,, the low dimension k = r(d;+dy—7),

vec?

o2 _ T . . _ Bmin(A)o®S.
Afsfd,),)\if7_1ug(1+§),B75*,dndBlf oS .
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LPA-ESTR: Theoretical bound

Theorem 9

Suppose that Assumptions 1 and 2 hold, A\min(©*) > S, for some
known S, > 0, and T > % The regret upper bound of

LPA-ESTR with ng = \/@ is

Reg(T) < O <a\/ % m.n(A)d05T>

with probability at least 1 — 26.

m Needs Assumption 2 and Apin(©*) > S,, as other ESTR
based algorithms do.

m Strictly better performance compare to SOTA.



Efficient Low-Rank Matrix Estimation, Experimental Design
L New Algorithms
L LpA-ESTR

, and Arm-Set-Dependent Low-Rank Bandits

Improvement of algorithms

3 Regret when Regret when P
‘ Regret bound | A= Byp(1) A= A Limitation
OFUL = o 5 o 5 o
(Abbasi-Yadkori et al., 2011) 0@V 0@ V) OW*VT)
ESTR < T o)? .
(Junetal., 2019) o( Amin (Q(m)) (ﬁ) ) - Bilinear
e-FALB N Bilinear &
(Jang et al., 2021) O(Vd*T) Comp. intractable
rO-UCB A0 S Bilinear &
(Jang et al., 2021) O(W/rd*T) B Requires oracle
(LuLc{I‘\Z]LQ’?P]) O(Vrd®T) O(Vrd®T) O(VrdT) Comp. intractable
LowESTR' % (5. % o ~ T
(Luetal., 2021) O [rs e T (32 O(Vrd*2T) | O(Vrd'/2T)
G-ESTT S (S R .
(Kang et al, 2022) O(d/4/rd M1 (T,)) O(rd?T)
Lower bound
Q(r{l’ﬁ)
(Luetal., 2021)
LPA-ETC (Algorithm 6) O((Rumaxt? Bumin ()T | O3> 1%3) | O(r*/3dT?/%)
LPA-ESTR (Algorithm 7) O(d"*\/Buin (AT (32))) O(Vd572T) O(Vd7*T)

m We clarified the arm-set dependent constants of other

algorithms.

B )\, = Apin(©*) in this table, for notational convenience.
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Estimation error

m The results on the || - ||nuc recovery error (y-axis) as a function
of the sample size (x-axis).
m The prefix (Cmin, Bmin): the experimental design.
m The suffix (LPA, nuc): the estimation method (LowPopArt
and || - |lnuc-RLS, respectively.)

A from Unlf(BFmb(l)) A= Ahard
R 10 Bmin_LPA (ours)
0175 Bmin_LPA (ours) Cmin_nuc
 ors Cmin_nuc 08 — Bmin_nuc
£ oaso N 5 —
e —— Bmin_nuc g Cmin_LPA
o " @ o6
£ —— Cmin_LPA €
S 0100 g 04
H3 ©
3 oors L .
g \7‘ 2
Z o050
00
0025
02
2000 4000 5000 8000 10000 20000 40000 60000 80000 100000
Time Time

Bmin and LPA generally outperform Cmin and nuc, respectively.
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Bandit experiments

m Trend of cumulative regret as time step increases

® In any situation, LowPopArt based algorithms work better
than SOTA algorithms.

ETC: LPA vs || - ||nuc ESTR: Synthetic ESTR: Real data

oo LPA-ETC (Ours) #%% — LPAESTR (ours) — LPAESTR (ours)

Cmin_nuc —— LowESTR 900001 — LowESTR
o 4 2001 — ro-ucs " — ro-ucs
& 30000 g — ESTR £ 400001 — ESTR
H E 15000 OFUL s OFUL
> g £ 30000
3 2000 H £
z 2 10000 2 20000
£ s s
S 000 © ©

2000 10000
o

oo oo sws w000 0 2000 40000 60000 80000 100000 G 20000 40000 60000 80000 100000
Time step Time step Time step
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Conclusion

m A novel low-rank estimation algorithm called LowPopArt
m utilizes the geometry of the arm set to perform the estimation
differently than conventional approaches.

m A novel experimental design for LowPopArt.

m Two new low-rank bandit algorithms based on LowPopArt ,
improving the dimensionality dependence in regret bounds.

Future work

m Designing general algorithms that can match guarantees in
specialized settings [7, 1].

m Establishing tight regret lower bound that depends on the
geometry of the arm set in the low-rank bandit problem.
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