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Introduction

Intro - Bandit problem

Scenario: At every time step t ∈ {1, . . . ,T},
1 The learner chooses a machine At

2 and receives reward yt ∼ DAt ,

3 The learner does not know DAt , and should learn by trials.

Objective: Maximize reward

D1 D2 D3

Exploration vs Exploitation

Exploration: spend enough chances to learn each Di

Exploitation: believe your estimate and try to earn.
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Adding low-rank structure

Many applications on this bandit problem.

Naturally, researchers tried to extend it by adding some
structures over it.

One good candidate is the low-rank structure.

In many cases, data exhibit low-rank structure.

We call this problem as a low-rank bandit problem, and has
the following applications.
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Problem Setup

At every time step t ∈ {1, . . . ,T},
1 The learner chooses an arm At from the arm set A ⊂ Rd1×d2

2 and receives reward yt = ⟨Θ∗,At⟩+ ηt ,

where Θ∗ is an unknown matrix with a known upper bound of
the rank at most r ≪ min(d1, d2).
ηt is an independent zero-mean σ-subgaussian noise
The inner product of two matrices are defined as
⟨A,B⟩ = ⟨vec(A), vec(B)⟩ = tr(A⊤B).

Objective: Minimize its (pseudo-)regret:

Reg(T ) := T max
A∈A

⟨Θ∗,A⟩ −
T∑
t=1

⟨Θ∗,At⟩.
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Assumptions

Traditional boundedness on arms and Θ∗, but on ∥ · ∥op and ∥ · ∥nuc

Assumption 1 (operator norm-bounded arm set)

The arm set A ⊆ Bop(1) :=
{
A ∈ Rd1×d2 : ∥A∥op ≤ 1

}
.

Assumption 2 (Bounded norm on reward predictor)

The reward predictor has a bounded nuclear norm: ∥Θ∗∥nuc ≤ S∗.

In many cases we will use the following weaker assumption than
Assumption 2.

Assumption 3 (Bounded expected reward)

For all A ∈ A,
∣∣⟨Θ∗,A⟩

∣∣ ≤ Rmax.
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Previous Works - generality

This field has been receiving a lot of attention recently.

but many of them only deals with specific arm sets.
Frobenius norm ball A = {M : ∥M∥F ≤ 1} [1]
Symmetric unit vector pairs {uu⊤ : u ∈ Sd−1} [6, 8],
Entrywise canonical actions
A = {eij : Only (i,j)-th entry is 1, and 0 otherwise} [5, 11, 2]
Perfectly symmetric and easy to think about exploration.

In reality, it isn’t!
(e.g.) Finite-armed low-rank bandit - usually arms are ’skewed’.

Well-distributed Skewed
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Previous Works - estimation perspective

Estimation: relied on the low-rank estimation literature.

Traditionally use nuclear norm regularized least squares
(∥ · ∥nuc-RLS)

Θ̂
(nuc)
t = arg min

Θ∈Rd1×d2

t∑
s=1

(
⟨Θ,As⟩ − ys

)2
+ λ∥Θ∥nuc

These low-rank estimation studies are mainly for offline setting
- the data is given, and the learner just estimates.

In the setting where the learner collects the data (such as
bandits), experimental designs are also important.
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Previous works - experimental design perspective

Experimental design: find out appropriate distribution
π ∈ P(A) for optimal estimation.

It is hard to optimize experimental design for ∥ · ∥nuc-RLS!
Instead: just maximizing minimum eigenvalue [3].

Definition 1

For each distribution π over A (i.e., π ∈ P(A)), define its covariance
matrix Q(π) := Ea∼π

[
vec(a)vec(a)⊤

]
=

∑
a∈A π(a)vec(a)vec(a)

⊤.

Cmin(A) = max
π∈P(A)

λmin(Q(π)).

or simply assume some nice exploration distribution [9, 4].
Not enough discussion on the experimental design!
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Question

For low-rank trace regression, can we design estimation
algorithms with experimental designs that can outperform

the classical nuclear norm penalized least squares?
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Contribution

1 A novel and computationally efficient low-rank
estimation method called LowPopArt .

We show that the estimation error of LowPopArt is not worse
and can orderwisely better than the classical ∥ · ∥nuc-RLS.

2 A computationally tractable design of experiment
objective B(Q(π)) optimized for LowPopArt .

3 Two computationally efficient and arm set
geometry-adaptive algorithms using LowPopArt, for
low-rank bandits with general arm sets:

LPA-ETC (LowPopArt-Explore-Then-Commit), algorithm that
works with fewer assumption.
LPA-ESTR (LowPopArt-Explore-Subspace-Then-Refine),
strictly better performance compared to SOTA.
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LowPopArt - Assumption

LowPopArt takes the population covariance matrix Q(π)
as its main input.

In some settings (such as bandits) where the learner should
also collect data by himself, it is natural.

LowPopArt also takes the pilot estimator Θ0 and pilot
estimation error bound R0 as input, if possible.

For the case that we already have an appropriate candidate.
If one does not have such candidate, one can simply set
Θ0 = 0d×d and R0 = Rmax.
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LowPopArt - Algorithm

1 For each sample (Ai ,Yi ), compute one-sample estimator Θ̃i .

Unbiased estimator of Θ∗ −Θ0

2 Using {Θ̃i}n0i=1, compute the matrix Catoni estimator Θ1 [10].

Lightening the tail distribution of singular values.

3 Run SVD on Θ1, and zero out all the singular values which
are under the threshold.
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LowPopArt - Algorithm
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Details for step 2 - matrix Catoni estimator [10]

Definition 2 (Catoni’s estimator)

Given a symmetric matrix M with its eigenvalue decomposition
M = UΛU⊤ where Λ = diag(λ1, · · · , λd), we first define
ϕ0 : R → R as

ψ0(x) =

{
log(1 + x + x2

2 ) if x > 0

− log(1− x + x2

2 ) otherwise

and ψ : Rd×d → Rd×d as

ψ(M) = U
[
diag(ψ0(λ1), ψ0(λ2), · · · , ψ0(λd))

]
U⊤
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Details for step 2 - matrix Catoni estimator [10]

Definition 3 (Dilation operator)

For any matrix A ∈ Rd1×d2 , define the dilation operator
H : Rd1×d2 → R(d1+d2)×(d1+d2) as

H(A) =

[
0d1×d1 A
A⊤ 0d2×d2

]
.

This method gives an operator norm confidence bound given
the operator norm variance.

Usually, it relies on the subgaussian proxy rather than variance.
For more details about how it works, please check [10].
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Experimental design for LowPopArt

New arm-set-dependent parameter B(Q)

We found out that the following quantity, B(Q(π)),
determines the variance (from the random arm selection) of
the singular values of the one-sample estimator, Θ̃i .

B(Q(π)) := max

(
λmax

( d2∑
i=1

D
(col)
i

)
, λmax

( d1∑
i=1

D
(row)
i

))
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Experimental design for LowPopArt

New design of experiment and Bmin(A)

One natural experimental design is to ‘minimize variance.’

Bmin(A) := min
π∈P(A)

B(Q(π)) (1)

Turns out this is a convex optimization.

Relationship between traditional B(Q(π)) and λmin(Q(π)):

Lemma 4

B(Q(π)) ≤ d
λmin(Q)

Lemma 5

Suppose Assumption 1 holds. Then d2 ≤ Bmin(A) ≤ d
Cmin

, and

there exists an arm set Ahard for which Bmin(Ahard) ≈ 1
Cmin

.
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Theoretical guarantee

Theoretical guarantee of LowPopArt

Theorem 6 (Theoretical guarantee of LowPopArt )

Suppose that Assumption 1 holds, and LowPopArt is run with arm
set A, sample size n0, and failure rate δ. Then its output Θ̂
satisfies rank(Θ̂) ≤ r and

∥Θ̂−Θ∗∥op ≤ Õ

(
(σ + R0)

√
B(Q(π))

n0

)
.

If we optimize π by Eq. (1), we can change B(Q(π)) to Bmin(A).
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Theoretical guarantee

Warm-LowPopArt

To avoid the multiplicative R0 term from the estimation.

Run LowPopArt twice.

The first phase is to create a pilot estimator Θ0 which satisfies
maxA∈A

∣∣⟨Θ0 −Θ,A⟩
∣∣ ≤ σ

The second phase is to finish estimation.



Efficient Low-Rank Matrix Estimation, Experimental Design, and Arm-Set-Dependent Low-Rank Bandits

LowPopArt : New low-rank estimation method

Theoretical guarantee

Warm-LowPopArt Analysis

Theorem 7

Suppose that Assumption 1 and 3 hold, and Warm-LowPopArt is
run with arm set A, sample size n0, failure rate δ, and

n0 ≥ Õ
(
r2B(Q(π)) · (σ+Rmax

σ )2
)
, then its output Θ̂ is such that

rank(Θ̂) ≤ r , and:

∥Θ̂−Θ∗∥op ≤ Õ

(
σ

√
B(Q(π))

n0

)
. (2)
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Theoretical guarantee

How good LowPopArt is compare to ∥ · ∥nuc-RLS?

Theoretical estimation error: ∥Θ̂−Θ∗∥op ≤ Õ

(
σ
ϕ2

√
1
n0

)
.

ϕ: Compatibility constant, hard to optimize.

Traditional estimation error (∥ · ∥nuc-RLS):

∥Θ̂−Θ∗∥op ≤ Õ

(
σC−1

min(A)

√
1

n0

)
.

In our setting, Cmin
−1(A) > d , so Cmin

−1(A) >
√

Bmin(A).

Our LowPopArt is always better than traditional
∥ · ∥nuc-RLS approach!

In many cases, LowPopArt is orderwise better

When A = BF (1), C
−1
min = d2 ≫ d1.5 =

√
Bmin.

When A = Ahard, C
−1
min ≈ d3 ≫ d1.5 ≈

√
Bmin.
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New algorithms

If we replace the exploration phases of the existing
experimental-design-based algorithms with our LowPopArt

-based method, it shows significantly better performance!
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LPA-ETC

LPA-ETC

This algorithm works with fewer and lenient assumptions

Needs only Assumption 1 and 3
No Assumption 2 or λmin(Θ

∗) assumption needed.
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LPA-ETC

LPA-ETC: Theoretical bound

Theorem 8 (Regret upper bound of LPA-ETC)

Suppose that Assumption 1 and 3 hold, and
T ≥ rBmin(A)(σ+Rmax

σ )4. The regret upper bound of LPA-ETC

with n0 = min(T ,
(
σ2r2Bmin(A)T 2/R2

max

)1/3
) is as follows:

Reg(T ) ≤ Õ((σ2Rmaxr
2T 2Bmin(A))1/3) (3)
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LPA-ESTR

LPA-ESTR
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New Algorithms

LPA-ESTR

LPA-ESTR: Theoretical bound

Theorem 9

Suppose that Assumptions 1 and 2 hold, λmin(Θ
∗) ≥ Sr for some

known Sr > 0, and T ≥ 16Bmin(A)σ4

d0.5Sr (Θ∗)2
. The regret upper bound of

LPA-ESTR with n0 =
√

d0.5Bmin(A)
S2
r

T is

Reg(T ) ≤ Õ

(
σ

√
S2
∗

S2
r
Bmin(A)d0.5T

)
with probability at least 1− 2δ.

Needs Assumption 2 and λmin(Θ
∗) ≥ Sr , as other ESTR

based algorithms do.

Strictly better performance compare to SOTA.
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LPA-ESTR

Improvement of algorithms

We clarified the arm-set dependent constants of other
algorithms.

λr := λmin(Θ
∗) in this table, for notational convenience.
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Estimation error

The results on the ∥ · ∥nuc recovery error (y-axis) as a function
of the sample size (x-axis).

The prefix (Cmin, Bmin): the experimental design.
The suffix (LPA, nuc): the estimation method (LowPopArt
and ∥ · ∥nuc-RLS, respectively.)

A from Unif(BFrob(1)) A = Ahard

Bmin and LPA generally outperform Cmin and nuc, respectively.
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Bandit experiments

Trend of cumulative regret as time step increases

In any situation, LowPopArt based algorithms work better
than SOTA algorithms.

ETC: LPA vs ∥ · ∥nuc ESTR: Synthetic ESTR: Real data
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Conclusion

A novel low-rank estimation algorithm called LowPopArt

utilizes the geometry of the arm set to perform the estimation
differently than conventional approaches.

A novel experimental design for LowPopArt.

Two new low-rank bandit algorithms based on LowPopArt ,
improving the dimensionality dependence in regret bounds.

Future work

Designing general algorithms that can match guarantees in
specialized settings [7, 1].

Establishing tight regret lower bound that depends on the
geometry of the arm set in the low-rank bandit problem.
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Thank you!
Email: ksajks@gmail.com

Web: http://jajajang.github.io
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