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Spike Neuron

“Training Spiking Neural Networks Using Lessons From Deep Learning.”
Eshraghian, Jason Kamran et al. 2021

Threshold Potential

0

1

Information in Spiking Neurons

• Floating-point Numbers

• Binary Value
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Spiking Neural Networks

https://spikingjelly.readthedocs.io/
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Time-series Forecasting

Observation Horizon

Forecast

• Statistics-base
• CNN-base
• RNN-base
• Transformer-base
• …
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Overview
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Temporal Alignment

Temporal Alignment

• Divide a time step ∆𝑇 of 
the time series into 𝑇𝑠
segments.

• Target: Floating-point 
Numbers → Spike Trains

ℝ𝑇×𝐶 → {0,1}𝑇𝑠×𝑇×𝐶
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Spike Encoders

• Delta-base

• Convolution-base

For previous studies on image processing:

Repetition for 𝑇𝑠 times is widely-used.

ℝ𝑇×𝐶 → {0,1}𝑇𝑠×𝑇×𝐶Target:

Disrupt the continuous nature of time series !!!
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Spiking Model Architecture

Model Architectures:

TCN → Spike-TCN

RNN → Spike-RNN

iTransformer → iSpikformer

Rules:

Replace ReLU as Leaky-IF

SEW Residual Module

Softmax-free Spiking Self-attention
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Main Experiments

Datasets:
• Metr-la: Average traffic speed measured on the highways of Los Angeles County;
• Pems-bay: Average traffic speed in the Bay Area; 
• Solar: Records of solar power production.
• Electricity: Hourly electricity consumption measured in kWh; 

Evaluation Metrics:
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Main Experiments
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Main Experiments

Findings:

SNNs succeed when temporal dynamics are properly preserved and handled.

 SNNs with our temporal modeling can be further improved by advanced spatial modeling techniques.
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Model Analysis

• SNNs with repetition encoders 
may struggle to converge;

• Both convolutional and delta 
spike encoder are effective 
event-driven spike generators;

• Shape-based encoder which 
takes a wide scope of sequence 
into consideration is more 
effective than a change-based 
encoder.
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Model Analysis

• Time Step 𝑇𝑠: the 𝑅2 values remain relatively stable with minimal variation as 𝑇𝑠 increases.

• Decay Rate 𝛽: a higher 𝛽 makes the SNN more persistent in its internal state, which is 
beneficial for retaining long-term information. 
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Temporal Analysis

Evaluation on Synthetic Time-series Data:

Low-frequency High-frequency
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Energy Reduction

Energy Estimation

ANNs: For layer 𝑏,

SNNs: For layer 𝑙,

T is the time step, 𝛾 is the firing rate of the input spikes

4.6 𝑝𝐽

0.9 𝑝𝐽
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Energy Consumption and Analysis

Model Architectures:
 TCN → Spike-TCN

 RNN → Spike-RNN

 iTransformer →

iSpikformer

Spike Encoder
• Delta-base

• Convolution-base

Real-world

Datasets:
 Metr-la, Pems-bay

 Solar-Energy

 Electricity

• Low-frequency and High-frequency Temporal Analysis

• Estimation of Energy Consumption 
Temporal Alignment
• Divide a time step ∆𝑇 of the time series into 𝑇𝑠

segments.
• Floating-point Numbers → Spike Trains

ℝ𝑇×𝐶 → {0,1}𝑇𝑠×𝑇×𝐶

Attention:
 Replace ReLU as Leaky-IF

 SEW Residual Module

 Softmax-free Self-attention



24Fudan NLP Lab
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