

Efficient and Effective Time-Series Forecasting with Spiking Neural Networks

Changze Lv¹, Yansen Wang², Dongqi Han², Xiaoqing Zheng¹, Xuanjing Huang¹, Dongsheng Li² ¹Fudan University, ²Microsoft Research Asia

- Spiking Neural Networks; Time-series Forecasting

> Methods

- Temporal Alignment; Spiking Model Architecture

> Experiments

ESIIragilian, Ja

3

Spiking Neural Networks

Fudan NLP Lab

- Spiking Neural Networks; Time-series Forecasting

> Methods

- Temporal Alignment; Spiking Model Architecture

> Experiments

Observation

$$\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T\} \in \mathbb{R}^{T \times C}$$

Horizon

$$\mathbf{Y} = \{\mathbf{x}_{T+1}, \mathbf{x}_{T+2}, \dots, \mathbf{x}_{T+L}\} \in \mathbb{R}^{L \times C}$$

- Spiking Neural Networks; Time-series Forecasting

> Methods

- Temporal Alignment; Spiking Model Architecture

> Experiments

Fudan NLP Lab

Temporal Alignment

• Divide a time step ΔT of the time series into T_s segments.

$$\Delta T = T_s \Delta t$$

• Target: Floating-point Numbers \rightarrow Spike Trains $\mathbb{R}^{T \times C} \rightarrow \{0,1\}^{T_s \times T \times C}$

Target:
$$\mathbb{R}^{T \times C} \rightarrow \{0,1\}^{T_S \times T \times C}$$

For previous studies on image processing:

Repetition for T_s times is widely-used.

Disrupt the **continuous nature** of time series !!!

• Delta-base

$$\mathbf{S} = \mathcal{SN} \left(\text{BN} \left(\text{Linear} \left(\mathbf{x}_t - \mathbf{x}_{t-1} \right) \right) \right)$$

• Convolution-base

 $\mathbf{S} = \mathcal{SN}\left(\mathrm{BN}\left(\mathrm{Conv}\left(\mathbf{X}\right)\right)\right)$

- Spiking Neural Networks; Time-series Forecasting

> Methods

- Temporal Alignment; Spiking Model Architecture

> Experiments

Model Architectures: ✓TCN → Spike-TCN ✓RNN → Spike-RNN ✓iTransformer → iSpikformer

Rules:

- ✓ Replace ReLU as Leaky-IF
- ✓SEW Residual Module
- ✓ Softmax-free Spiking Self-attention

- Spiking Neural Networks; Time-series Forecasting

> Methods

- Temporal Alignment; Spiking Model Architecture

> Experiments

Main Experiments

Datasets:

- Metr-la: Average traffic speed measured on the highways of Los Angeles County;
- **Pems-bay**: Average traffic speed in the Bay Area;
- Solar: Records of solar power production.
- Electricity: Hourly electricity consumption measured in kWh;

Dataset	Samples	Variables	Length	Train-Valid-Test Ratio
Metr-la	34,272	207	12	(0.7, 0.2, 0.1)
Pems-bay	52, 116	325	12	$\left(0.7, 0.2, 0.1 ight)$
Solar-energy	52, 560	137	168	$\left(0.6, 0.2, 0.2 ight)$
Electricity	26,304	321	168	(0.6, 0.2, 0.2)

Evaluation Metrics:

$$RSE = \sqrt{\frac{\sum_{m=1}^{M} ||\mathbf{Y}^m - \hat{\mathbf{Y}}^m||^2}{\sum_{m=1}^{M} ||\mathbf{Y}^m - \bar{\mathbf{Y}}||^2}},$$
$$R^2 = \frac{1}{MCL} \sum_{m=1}^{M} \sum_{c=1}^{C} \sum_{l=1}^{L} \left[1 - \frac{(Y_{c,l}^m - \hat{Y}_{c,l}^m)^2}{(Y_{c,l}^m - \bar{Y}_{c,l})^2} \right]$$

Main Experiments

Table 1. Experimental results of time-series forecasting on 4 benchmarks with different prediction lengths (horizons) L. The best and the second-placed results are formatted in bold font and underlined format. $\uparrow(\downarrow)$ indicates the higher (lower) the better. All SNNs are equipped with a convolutional spike encoder in this table. The numbers in the **Avg. Rank** column indicate the average ranking of the current row's models within each specific setting. Numbers in the **Avg.** column with * indicate that a model significantly (p < 0.05) outperforms its counterpart. All results are averaged across 3 random seeds.

Method Spik	Spike	Matria	Metr-la			1	Pems-bay			Solar			Electricity			Ava	Avg Donk			
	Spike		6	24	48	96	6	24	48	96	6	24	48	96	6	24	48	96	- Avg.	Avg. Kalik \downarrow
ARIMA X	Y	$R^2\uparrow$.687	.441	.282	.265	.741	.723	.692	.670	.951	.847	.725	.682	.963	.960	.914	.863	.713	7.3
	^	RSE↓	.575	.742	.889	.902	.532	.548	.562	.612	.202	.365	.588	.589	.522	.534	.564	.599	.583	7.3
	Y	$R^2\uparrow$.685	.437	.265	.233	.732	.712	.689	.665	.944	.836	.711	.675	.962	.968	.912	.852	.705	8.4
	^	RSE↓	.572	.738	.912	.925	.544	.532	.577	.592	.225	.388	.612	.575	.603	.612	.633	.642	.605	7.6
	$R^{2}\uparrow$.820	.601	.455	.330	.881	.749	.695	.689	.958	.871	.737	.661	.975	.973	.968	.962	.770	3.9	
ICN	^	RSE↓	.446	.665	.778	.851	.373	.541	.583	.587	.210	.359	.513	.583	.282	.287	.319	.345	.483	3.6
Spile TCN	1	${ m R}^2\uparrow$.783	.603	.468	.326	.811	.729	.662	.633	.937	.840	.708	.650	.970	.963	.958	.953	.750	7.0
Spike-ICN 🗸	~	RSE↓	.491	.665	.769	<u>.865</u>	.469	.541	.625	.635	.259	.401	.541	.596	.333	.342	.368	.389	.518	6.1
CDU	v	$R^{2}\uparrow$.759	.429	.301	.194	.747	.703	.691	.665	.950	.875	.781	.737	.981	.972	.971	.964	.733	5.8
GRU	^	RSE↓	.517	.797	.882	.947	.529	.573	.584	.608	.219	.355	.476	.522	.506	.598	.537	.587	.573	7.1
Spiles CDU	/	$R^2\uparrow$.846	.615	.427	.275	.864	.741	.688	.657	.912	.822	.771	.668	.978	.964	.962	.959	.759	6.2
Spike-GRU	•	RSE↓	.414	.663	.827	.943	.398	. <mark>535</mark>	.601	.621	.299	.430	.485	.629	.280	.317	.338	.484	$.517^{*}$	6.0
Spike DNN	1	$R^2\uparrow$.846	.622	.433	.283	.872	.745	.685	.654	.923	.820	.812	.714	.977	.972	.962	.960	$.768^{*}$	5.2
Spike-Kinin	•	RSE↓	.412	.648	.794	.935	.387	.528	.588	.634	.278	.425	.435	.586	.267	.296	.346	.481	$.503^{*}$	4.8
Autoformore	v	$R^{2}\uparrow$.762	.548	.411	.282	.782	.711	.689	.668	.960	.852	.791	.701	.980	.977	.975	.963	.753	4.6
Autorormer	^	RSE↓	.565	.692	.785	.872	.452	.543	.577	.565	.212	.432	.622	.685	.481	.506	.566	.548	.569	6.6
Transformer	×	$R^{2}\uparrow$.829	.623	.439	.285	.887	.719	.685	.668	.964	.879	.799	.738	.979	.977	.975	.964	.776	2.9
rransformer	^	RSE↓	.436	.648	.780	.878	.362	.547	.561	.584	.191	.348	.448	.563	.259	.305	.335	.427	.480	2.8
Spiltformor	1	${ m R}^2\uparrow$.817	.618	.440	.279	.879	.744	.687	.674	<u>.961</u>	.876	.795	.738	.977	.974	.972	.963	.775	$\underline{3.5}$
iSpikformer	~	RSE↓	.475	.668	.752	.905	.376	.536	.569	.580	<u>.204</u>	.333	.465	.521	<u>.263</u>	.284	.338	.348	.476	<u>2.9</u>

Main Experiments

Figure 3. Critical Difference (CD) diagram of all methods in Table 1 on time series forecasting tasks with a confidence level of 95%.

Findings:

✓SNNs succeed when temporal dynamics are properly preserved and handled.

✓ SNNs with our temporal modeling can be further improved by advanced spatial modeling techniques.

- Spiking Neural Networks; Time-series Forecasting

> Methods

- Temporal Alignment; Spiking Model Architecture

> Experiments

Model Analysis

Mathod	Encoder	Metric		Met	t r-la		Electricity			
Method			6	24	48	96	6	24	48	96
	Convolutional	$R^2\uparrow$.783	.603	.468	.326	.970	.963	.958	.953
S	Convolutional	RSE↓	.491	.664	.769	.935	.333	.342	.368	.389
Ĺ	Delta	$R^2\uparrow$.751	.582	.458	.317	.963	.956	.948	.942
ilke	Della	RSE↓	.525	.676	.768	.871	.344	.371	.432	.460
Sp	Papatition	$R^2\uparrow$.024*	.024*	.022*	.020*	.878	.710*	.710*	.710*
	Repetition	RSE↓	1.05*	1.04*	1.04*	1.05*	.662	1.03*	1.03*	1.03*
Spike-RNN	Convolutional	$R^{2}\uparrow$.846	.622	.433	.283	.977	.972	.962	.960
		RSE↓	.41 2	.648	.794	.935	.267	.296	.346	.481
	Delta	$R^2\uparrow$.839	.616	.430	.277	.969	.966	.962	.876
		RSE↓	.420	.652	.799	.938	.301	.318	.344	.685
	Repetition	$R^2\uparrow$.817	.578	.021*	.021*	.901	.816	.710*	.710*
		RSE↓	.481	.684	1.04*	1.04*	.592	.766	1.03*	1.04*
oikformer	Convolutional	$R^{2}\uparrow$.817	.618	.440	.279	.977	.974	.972	.963
		RSE↓	.475	.668	.752	.905	.263	.284	.338	.348
	Dalta	$R^2\uparrow$.804	.601	.434	.272	.972	.969	.960	.944
	Dena	RSE↓	.496	.666	.759	.910	.274	.302	.391	.455
iSf	Repetition	$R^2\uparrow$.692	.548	.238	.021*	.962	.953	.849	.710*
	Repetition	RSE↓	.573	.708	.847	1.04*	.289	.557	.705	1.03*

- SNNs with repetition encoders may struggle to converge;
- Both convolutional and delta spike encoder are effective event-driven spike generators;
- Shape-based encoder which takes a wide scope of sequence into consideration is more effective than a change-based encoder.

Model Analysis

Figure 4. The impact of two crucial hyper-parameters in SNNs: time Steps T_s and the decay rate β . (a) and (b): \mathbb{R}^2 versus T_s on Metr-la and Solar respectively. (c) and (d): \mathbb{R}^2 versus β on Metr-la and Solar respectively. The horizon L of these experiments is set to 24.

- Time Step T_s : the R^2 values remain relatively stable with minimal variation as T_s increases.
- Decay Rate β : a higher β makes the SNN more persistent in its internal state, which is beneficial for retaining long-term information.

Evaluation on Synthetic Time-series Data:

 $\mathcal{X}(t) = A_1 \sin(\omega_1 t) + A_2 \sin(\omega_2 t + \phi) + \mathcal{N}(0, \sigma)$

- Spiking Neural Networks; Time-series Forecasting

> Methods

- Temporal Alignment; Spiking Model Architecture

> Experiments

Energy Estimation

ANNs: For layer b, $Energy(b) = E_{MAC} \times FLOPs(b)$ SNNs: For layer l, $Energy(l) = E_{AC} \times SOPs(l)$ $SOPs(l) = T \times \gamma \times FLOPs(l)$

T is the time step, γ is the firing rate of the input spikes

Model	Param(M)	OPs (G)	Energy (mJ)	Energy Reduction	R ²
TCN	0.460	0.14	0.64	62 60%	.973
Spike-TCN	0.461	0.15	0.23	03.0070↓	.963
GRU	1.288	1.32	6.07	75 05%	.972
Spike-GRU	1.289	1.63	1.51	70.0070↓	.964
iTransformer	1.634	2.05	9.47	66 20%	.977
iSpikformer	1.634	3.55	3.19	UU.3U70 ↓	.974

Efficient and Effective Time-Series Forecasting with Spiking Neural Networks

Changze Lv, Yansen Wang, Donggi Han, Xiaoging Zheng, Xuanjing Huang, Dongsheng

Correspondence to: yansenwang@microsoft.com, zhengxq@fudan.edu.cn

Changze Ly Homepage (WeChat)

Yansen Wang Xiaoqing Zhend (WeChat) (WeChat)

Spiking Neural Networks

Temporal Alignment and Spike Encoder

Temporal Alignment

- Divide a time step ΔT of the time series into T_s segments. $\Delta T = T_{\circ} \Delta t$
- Floating-point Numbers \rightarrow Spike Trains $\mathbb{R}^{T \times C} \rightarrow \{0,1\}^{T_S \times T \times C}$

Spike Encoder

Delta-base

$$\mathbf{S} = \mathcal{SN} \left(\text{BN} \left(\text{Linear} \left(\mathbf{x}_t - \mathbf{x}_{t-1} \right) \right) \right)$$

Convolution-base

$$\mathbf{S} = \mathcal{SN}\left(\mathrm{BN}\left(\mathrm{Conv}\left(\mathbf{X}
ight)
ight)
ight)$$

A Unified Framework

Experimental Results

Ablation Study

Project

Energy Consumption and Analysis

Estimation of Energy Consumption

Model	Param(M)	OPs (G)	Energy (mJ)	Energy Reduction	\mathbf{R}^2
TCN	0.460	0.14	0.64	63 60%	.973
Spike-TCN	0.461	0.15	0.23	03.00 70 ↓	.963
GRU	1.288	1.32	6.07	75.05%	.972
Spike-GRU	1.289	1.63	1.51	13.03% ↓	.964
iTransformer	1.634	2.05	9.47	66 20%	.977
iSpikformer	1.634	3.55	3.19	00.30%	.974

Low-frequency and High-frequency Temporal Analysis

THANKS!

Contact us: czlv22@m.fudan.edu.cn yansenwang@microsoft.com zhengxq@fudan.edu.cn

Fudan NLP Lab