

Bridging Mini-Batch and Asymptotic Analysis in Contrastive Learning: From InfoNCE to Kernel-Based Losses

Panagiotis Koromilas^{* 1} Giorgos Bouritsas^{* 1,2} Theodoros Giannakopoulos³ Mihalis A. Nicolaou⁴ Yannis Panagakis^{1,2}

¹University of Athens ²Archimedes/Athena RC ³NCSR "Demokritos" ⁴The Cyprus Institute

What do different contrastive losses actually optimize for?

- InfoNCE variants and Kernel Contrastive Losses (KCL) **share the same minimisers** when optimising either their **batch objectives** or their expectations **asymptotically**.
- InfoNCE variants exhibit **unknown non-asymptotic behavior**
- Kernel Contrastive Losses are (i) **non-asymptotically** minimised by perfectly aligned and uniform encoders, and (ii) their expected loss is **independent of the batch size**.

Can we optimise for both alignment and uniformity?

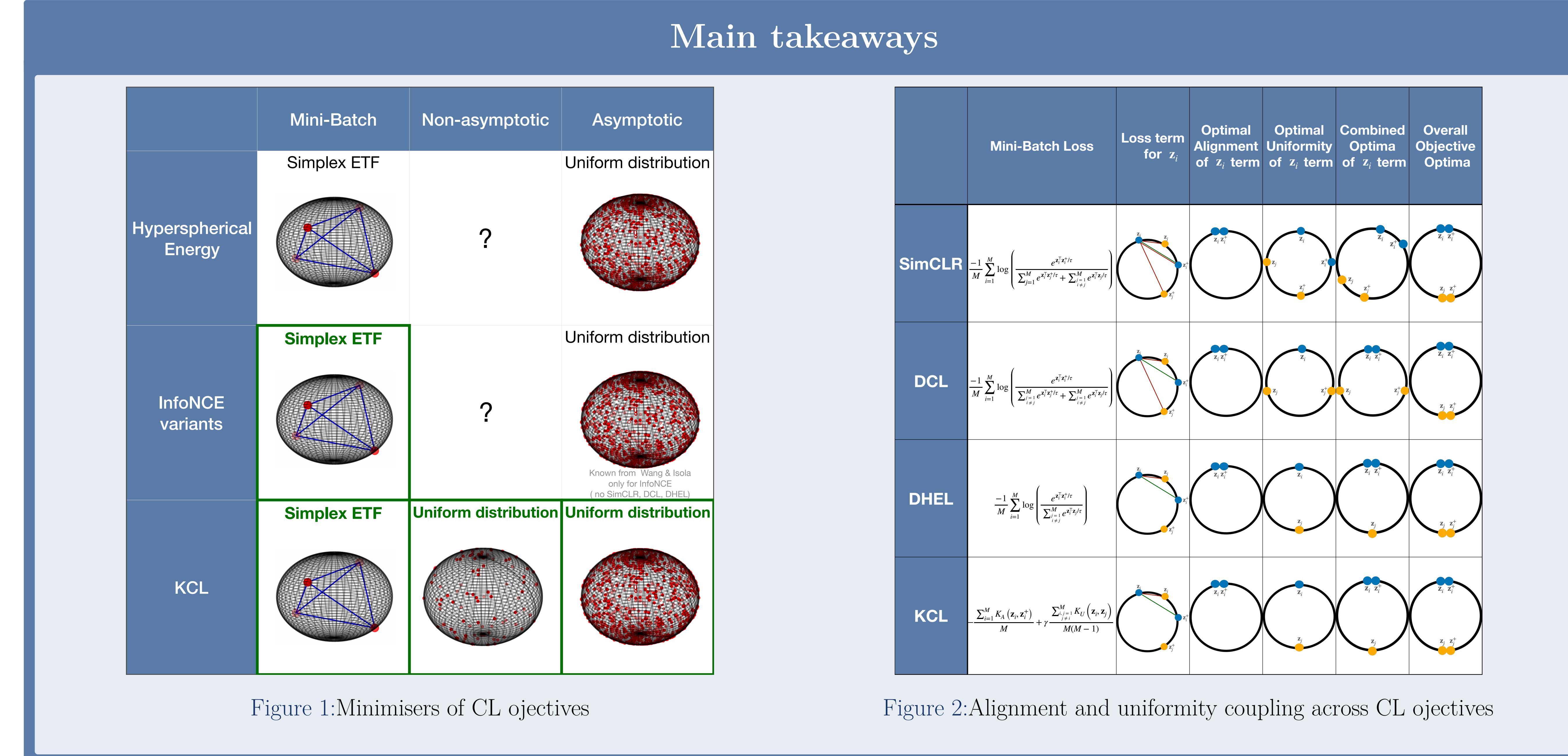
- Our theoretical results suggest that there can be a perfectly aligned encoder that is uniform on the negative samples
- InfoNCE variants demonstrate direct and indirect **coupling between the alignment and uniformity** terms thus hurting optimisation
- We introduce the **Decoupled Hyperspherical Energy Loss (DHEL)** that completely decouples alignment from uniformity
- Kernel Contrastive Losses (KCL) also decouple these terms

InfoNCE variants share the same mini-batch minimisers

Corollary from Theorems 4.1 & 5.1: When the number of samples is $1 < M \leq d + 1$ the mini-batch CL loss functions $\mathbf{L}_{\text{InfoNCE}}$, $\mathbf{L}_{\text{SimCLR}}$, \mathbf{L}_{DCL} and \mathbf{L}_{DHEL} are all minimised by a point configuration where (i) the positive samples are perfectly aligned, and (ii) the **negative samples form a simplex ETF** on the unit sphere \mathbb{S}^{d-1} .

InfoNCE variants share the same minimisers asymptotically

Proposition: The expectations of all the batch-level $\mathbf{L}_{\text{InfoNCE}}$, $\mathbf{L}_{\text{SimCLR}}$, \mathbf{L}_{DCL} and \mathbf{L}_{DHEL} have the **same asymptotic behaviour** when subtracting appropriate normalising constants. Therefore, (from Wang & Isola 2020 ICML) they are all asymptotically minimised by a point configuration where (i) the positive samples are perfectly aligned, and (ii) the negative samples are uniformly distributed on the sphere $U(\mathbb{S}^{d-1})$.



Kernel Contrastive Losses share the same minimisers as InfoNCE

Mini-Batch: From **Theorem 6.1** Kernel-based losses are minimised for the same point configuration as the InfoNCE variants.

Asymptotically: Known result from Hyperspherical Energy Minimisation

KCL are minimised by the uniform distribution non-asymptotically

Proposition: The expectation of the batch-level kernel contrastive loss functions is **independent of the size of the batch**. Therefore, the batch-level loss is an **unbiased estimator** of the (asymptotic) expected loss.

Results

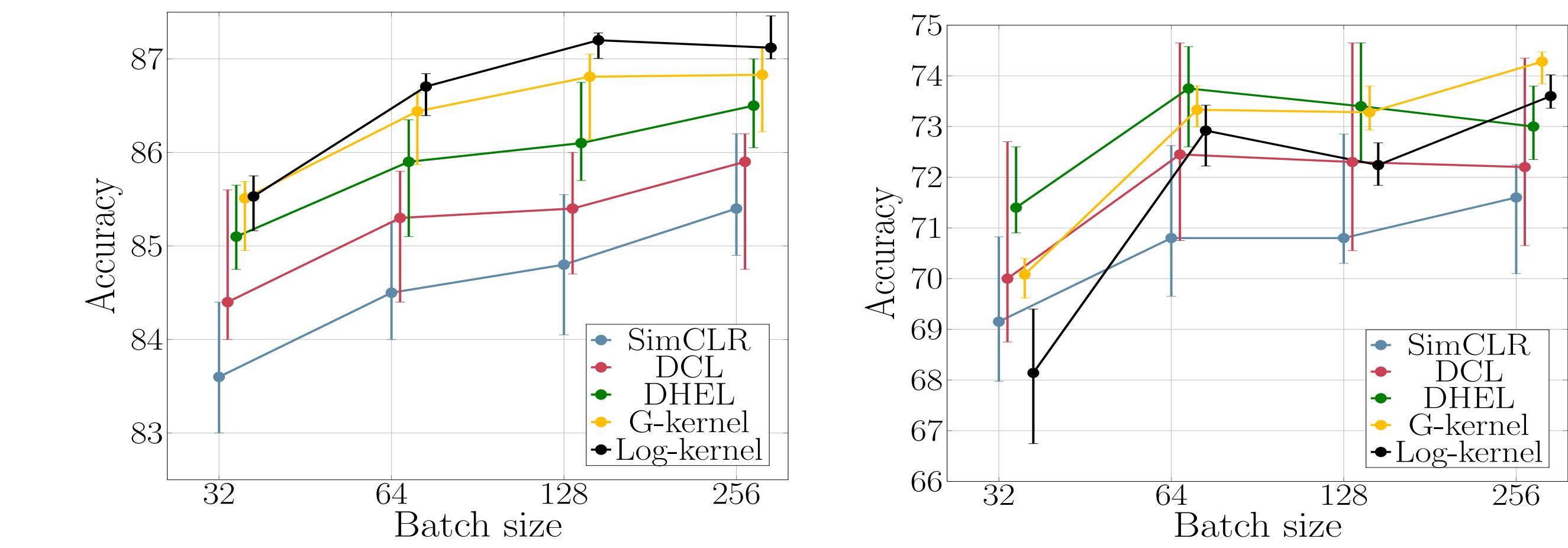
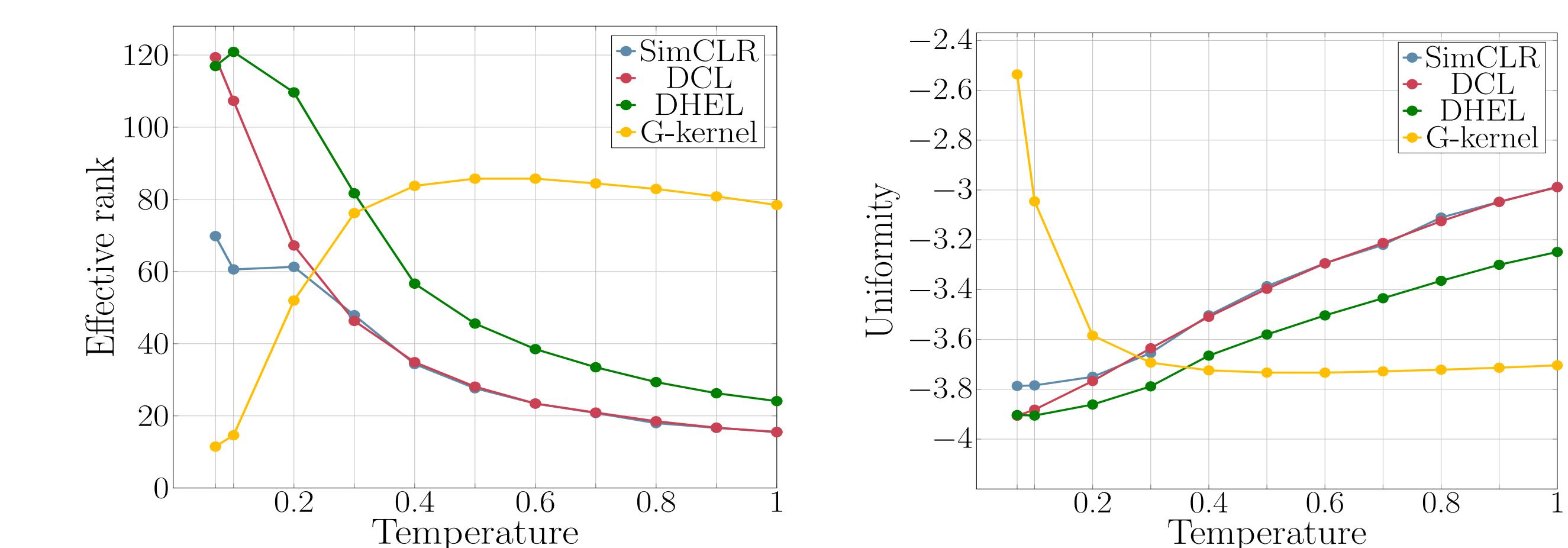


Figure 3: Median performance for different batch sizes on CIFAR10 (left) and ImageNet-100 (right). Errors against each methods hyperparameters are calculated using the 25% and 75% quantiles.



Pros of DHEL and KCL

- Outperform InfoNCE variants even with smaller batch sizes
- Demonstrate **robustness against hyperparameters**
- Effectively **utilize more dimensions**, mitigating the dimensionality collapse problem
- Learn representations that are consistently **more uniformly distributed** across temperature values
- Achieve an **alignment-uniformity balance** that benefits downstream performance

DHEL vs KCL: DHEL (i) is **consistent** across datasets and (ii) requires **fewer hyperparameters** by naturally balancing alignment and uniformity. KCL is more **robust** in both performance and properties.