

Optimally Improving Cooperative Learning in a Social Setting

Shahrzad Haddadan, Cheng Xin, Jie Gao

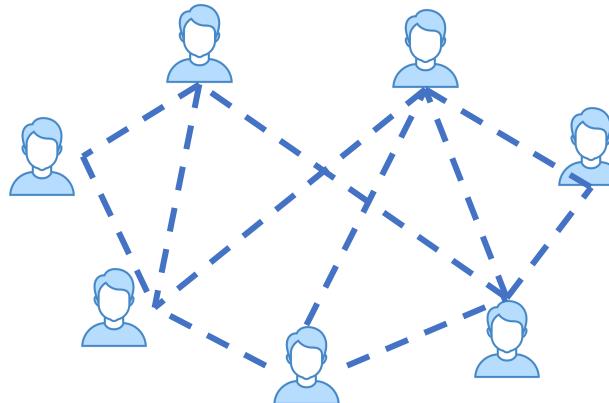
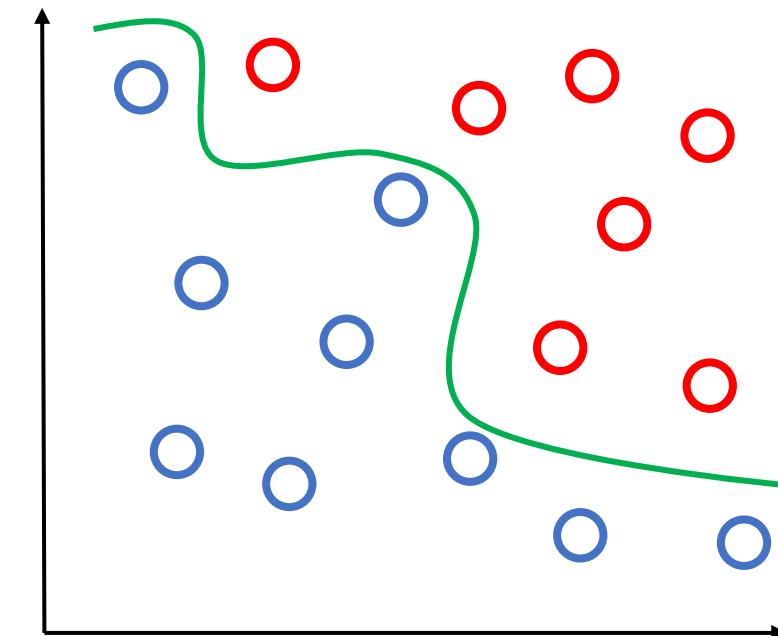
The 41st International Conference on Machine Learning (ICML 2024)

Motivation

- Consider a set of **networked** agents who solve a common classification problem by learning **separate models**

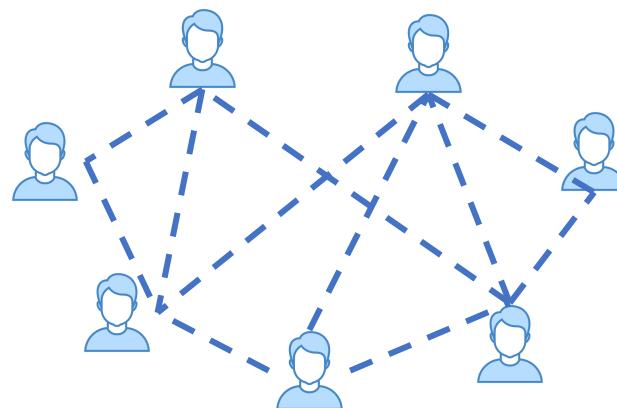
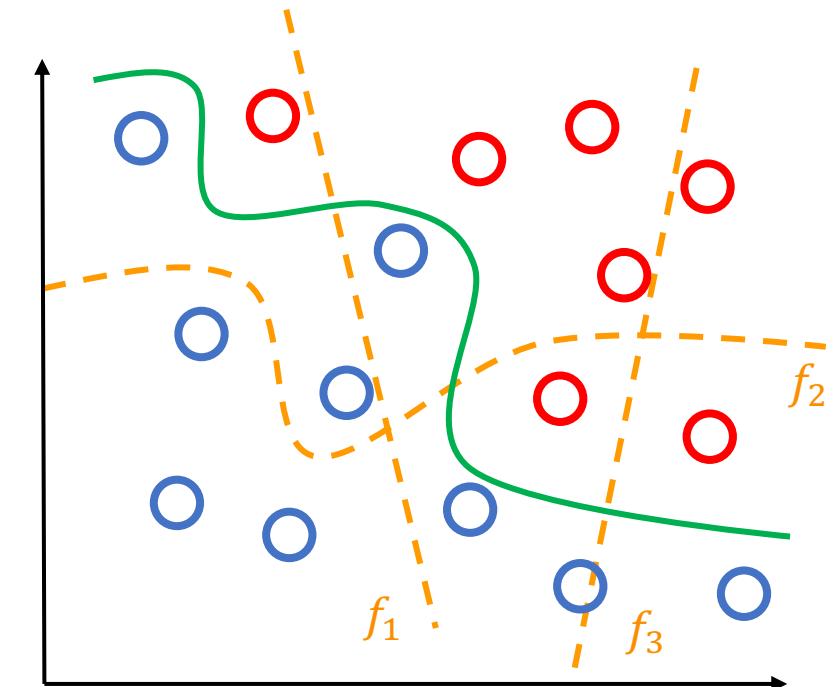
Examples:

- whether a content in OSN is AI-generated
- whether a stock value is over-priced
- whether a security system is under attack



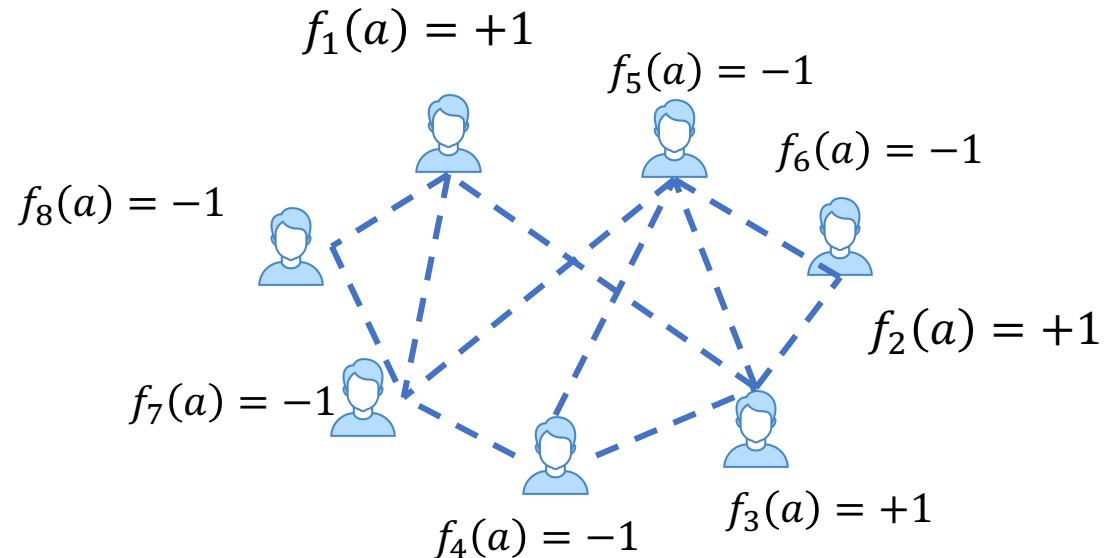
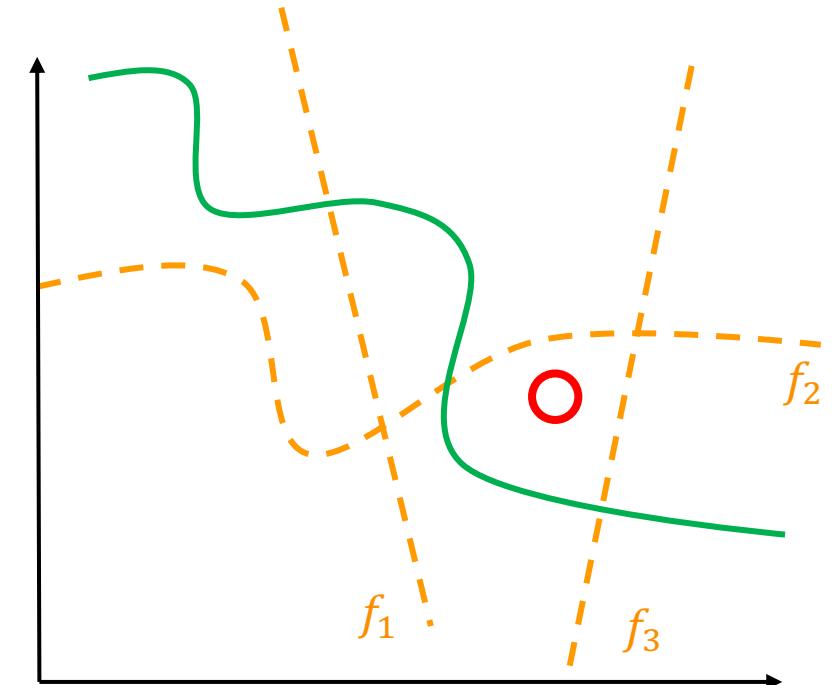
Modeling

- Assume $f: \Omega \rightarrow \{-1, +1\}$ and a set of networked agents V
- Each agent $v_i \in V$ owns a classifier $f_i: \Omega \rightarrow \{-1, +1\}$
- Nature samples $a \in \Omega$



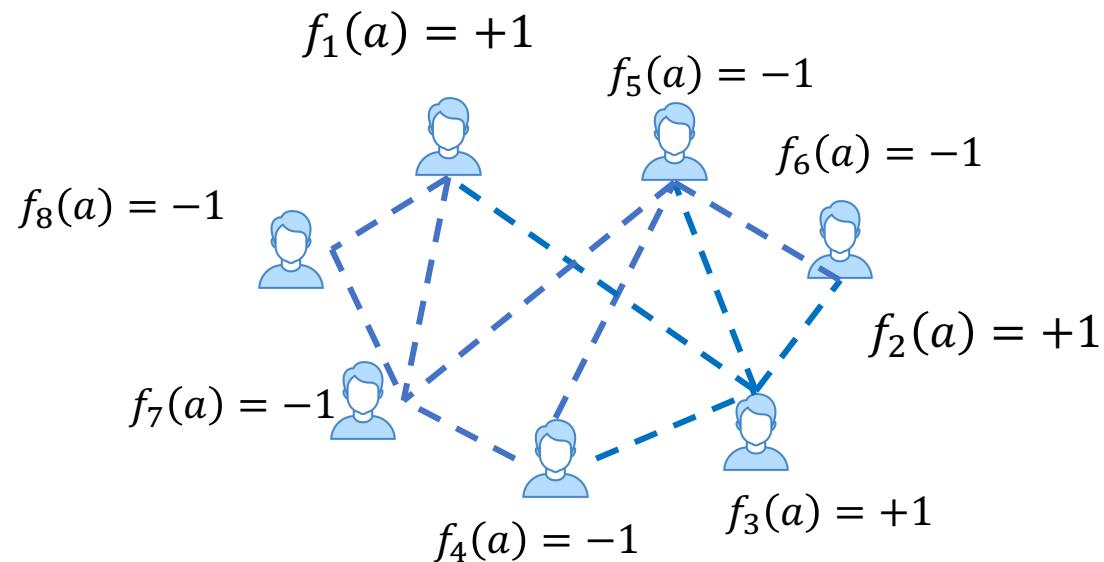
Modeling

- Assume $f: \Omega \rightarrow \{-1, +1\}$ and a set of networked agents V
- Each agent $v_i \in V$ owns a classifier $f_i: \Omega \rightarrow \{-1, +1\}$
- Nature samples $a \in \Omega$



Modeling

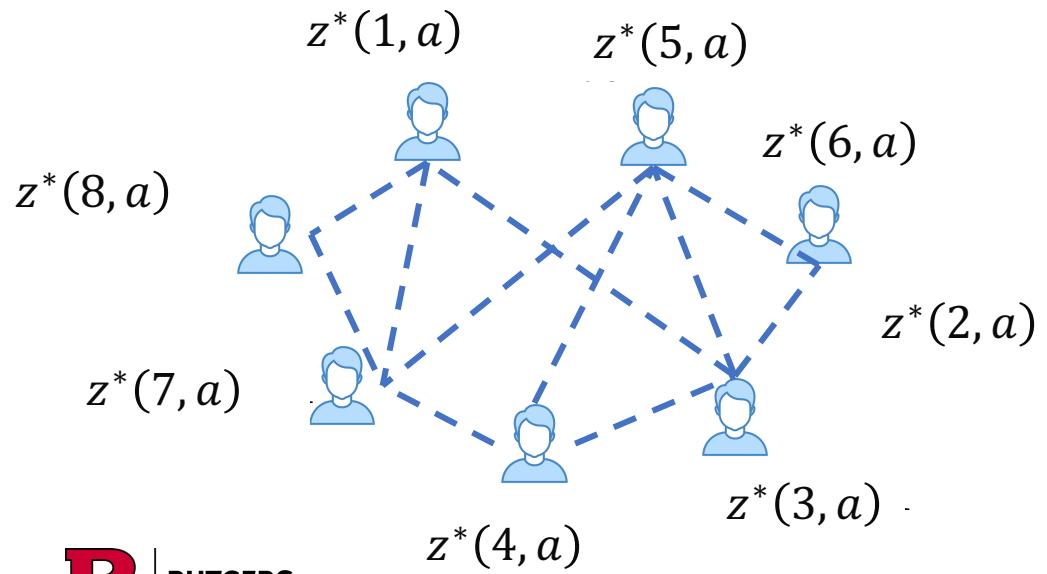
- Assume $f: \Omega \rightarrow \{-1, +1\}$ and a set of networked agents V
- Each agent $v_i \in V$ owns a classifier $f_i: \Omega \rightarrow \{-1, +1\}$
- Nature samples $a \in \Omega$
- Through the network agents exchange predictions $f_i(a)$ and will update it to:



$$z^*(i, a) = \sum_{v_j \in V} W_{ij} f_j(a)$$

Modeling

- Assume $f: \Omega \rightarrow \{-1, +1\}$ and a set of networked agents V
- Each agent $v_i \in V$ owns a classifier $f_i: \Omega \rightarrow \{-1, +1\}$
- Nature samples $a \in \Omega$
- Through the network agents exchange predictions $f_i(a)$ and will update it to:



$$z^*(i, a) = \sum_{v_j \in V} W_{ij} f_j(a)$$

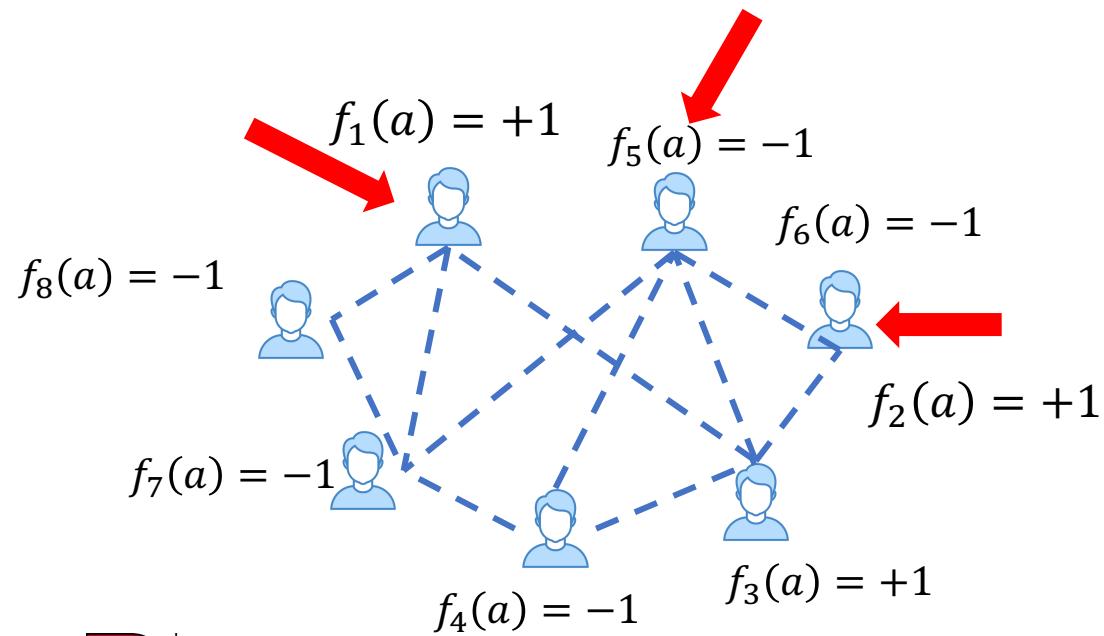
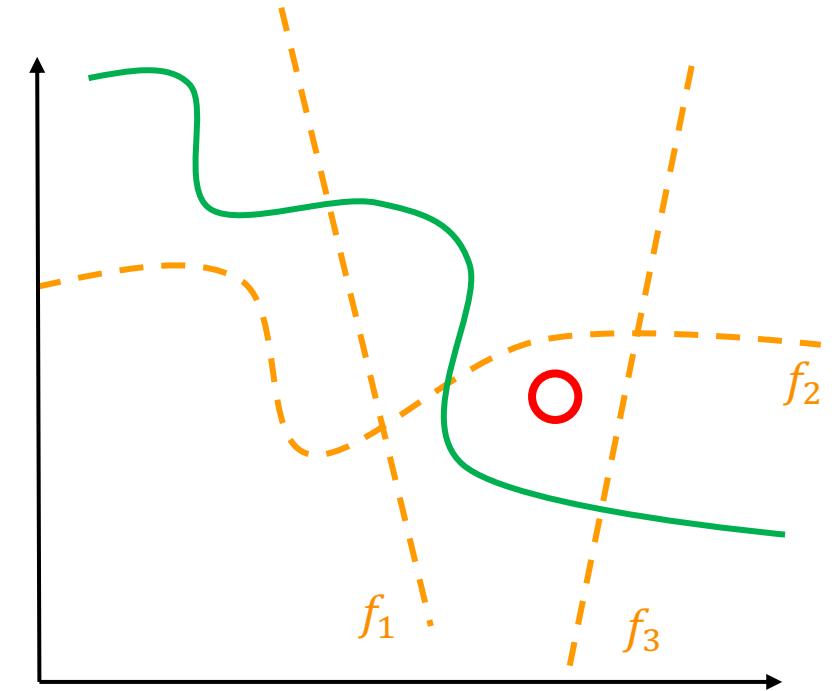
Accuracy measure:

$$Z(i, a) \doteq f(a) \cdot z^*(i, a) \in [-1, 1]$$

Algorithms

- A social planner who knows $f(a)$, selects $S \subseteq V$ and improves their predictions as:

$$\forall v_i \in S, \quad f_i(a) = (1 - \phi)f_i(a) + \phi f(a)$$

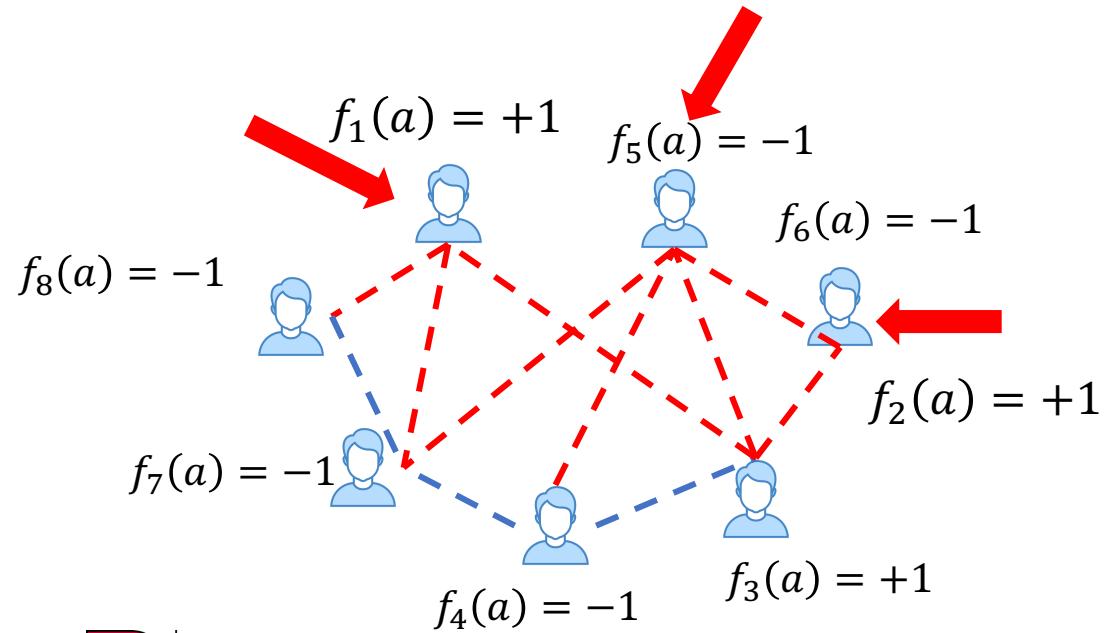
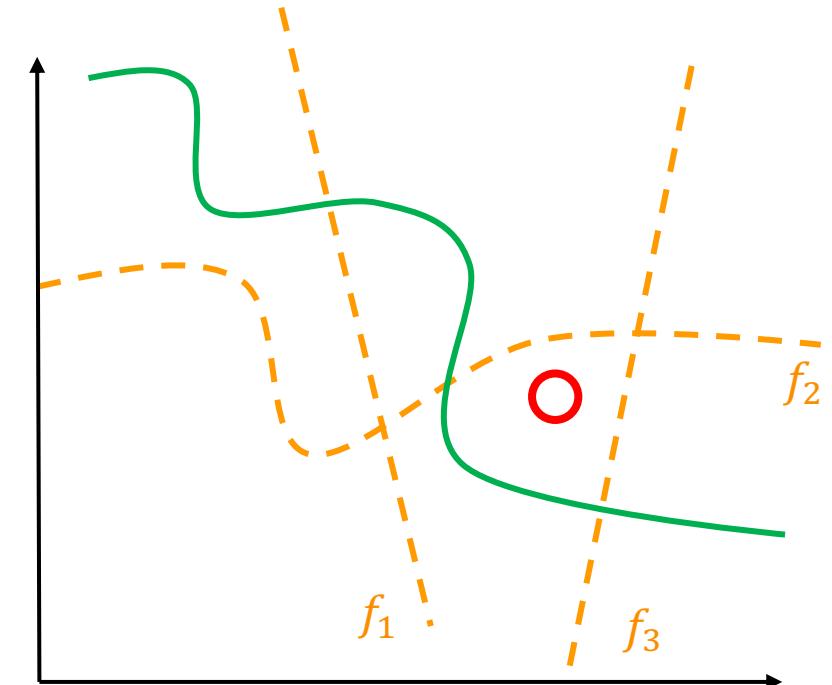


Algorithms

- A social planner who knows $f(a)$, selects $S \subseteq V$ and improves their predictions as:

$$\forall v_i \in S, \quad f_i(a) = (1 - \phi)f_i(a) + \phi f(a)$$

$$\forall v_i \in V \quad Z(i, a) \Rightarrow Z_{new}(i, a)$$



Summary of results: hardness

- **Aggregate improvement**
$$G^{(\text{agg})}(S) \triangleq \mathbb{E}_{a \sim \Omega} \left[\sum_{i=1}^n Z_{\text{new}}(i, a) - Z(i, a) \right]$$

Optimizing Aggregate improvement in EASY

- **Egalitarian improvement**

$$G^{(\text{egal})}(S) \triangleq \mathbb{E}_{a \sim \Omega} \left[\sum_{i=1}^n \mathbf{1} (Z(i, a) < 0 \wedge Z(i, a) < Z_{\text{new}}(i, a)) \right]$$

Optimizing Egalitarian improvement in HARD

Summary of results: approximation algorithms for egalitarian improvement

- **EgalAlg:**
 - Assumption: full access to **the joint probability distribution** of classifiers.
 - Runtime: $\Theta(|\Omega|n^2k)$ Approximation ratio: $(1 - 1/e)$
- **EgalAlg(appx):**
 - Assumption: access to **pairwise independence** of agents' prediction & **error rates**
 - Runtime: $\Theta(n^3k)$ Approximation ratio: $(1 - 1/e) - \Delta_{\text{ind}}$

Approximately improve egalitarian

Our greedy algorithms iteratively optimizes some **marginal gain** $\text{gr}(S)$:

$$\text{gr}(S) \triangleq \operatorname{argmax}_{u \in V} \mathcal{G}^{(\text{egal})}(S \cup \{u\}) - \mathcal{G}^{(\text{egal})}(S) ,$$

$$= \operatorname{argmax}_{u \in V} \sum_{\substack{i=1:n \\ \bar{W}_{iu} \neq 0}} \Delta \mathcal{G}_i(S, u).$$

- EgalAlg:

$$\Delta \mathcal{G}_i := \mathbb{P}_{a \sim \Omega} \left(\mathcal{Z}(i, a) \leq 0 \wedge \left(\bigwedge_{\substack{v_j \in S \\ \bar{W}_{ji} \neq 0}} y(a) = \hat{y}_j(a) \right) \wedge y(a) \neq \hat{y}_u(a) \right)$$

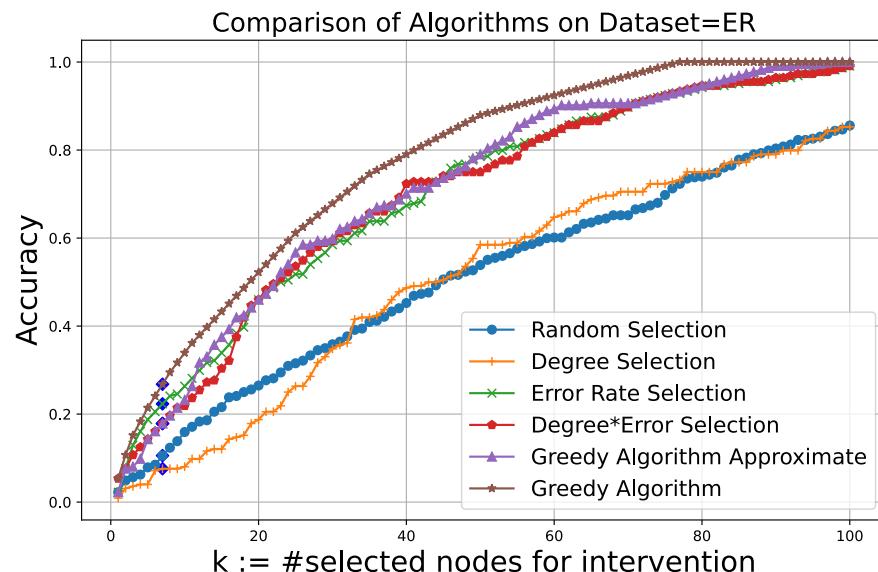
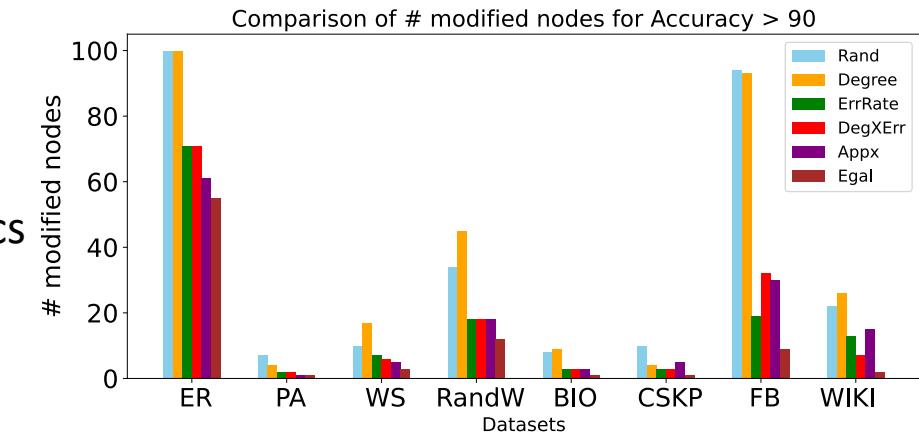
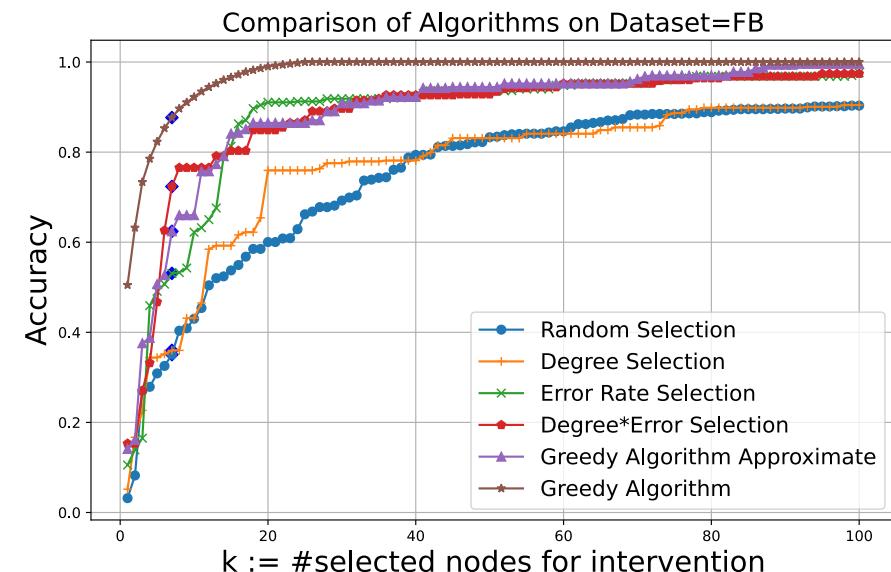
- EgalAlg(appx):

$$\widehat{\Delta \mathcal{G}_i}(S, u) := \mathbf{1}(\Psi_i(S, u) < 0) \text{err}(u) \prod_{\substack{v_j \in S \\ \bar{W}_{ij} \neq 0}} (1 - \text{err}(v_j))$$

Experiments

- Compare to baselines with heuristic or random marginals:

$$\Delta \mathcal{G}_i \leftarrow \text{node degree} / \text{error rate} / \text{random}$$
- Results of algorithms can be categorized into four tiers:
 Tier 1 (EgalAlg) >> Tier 2 (EgalAlg(appx)) \geq Tier 3 (heuristics) >> Tier 4 (random)
- High accuracy achieved with only $\log(n)$ modified nodes



Experiments

Score	Method	Datasets							
		ER (128)	PA (128)	WS (128)	RandW (128)	BIO (297)	CSPK (39)	FB (620)	WIKI (890)
Acc@ k=log(n)	Rand	0.11	0.88	0.53	0.18	0.80	0.63	0.35	0.48
	Degree	0.08	0.96	0.42	0.12	0.78	0.84	0.36	0.49
	ErrRate	0.22	1.00	0.76	0.47	0.96	0.94	0.53	0.54
	DegXErr	0.18	1.00	0.89	0.37	0.96	1.00	0.72	0.78
	Appx	0.18	1.00	0.87	0.41	0.94	0.84	0.62	0.64
	Egal	0.27	1.00	1.00	0.58	1.00	1.00	0.88	0.96
#k @ Acc>90%	Rand	>100	7	10	34	8	10	94	22
	Degree	>100	4	17	45	9	4	93	26
	ErrRate	71	2	7	18	3	3	19	13
	DegXErr	71	2	6	18	3	3	32	7
	Appx	61	1	5	18	3	5	30	15
	Egal	55	1	3	12	1	1	9	2
#k @ Acc>75%	Rand	83	8	16	61	15	14	37	55
	Degree	83	5	28	64	14	6	20	54
	ErrRate	46	3	10	31	5	4	14	26
	DegXErr	51	3	8	36	4	3	8	16
	Appx	47	2	9	35	6	7	11	39
	Egal	36	2	4	19	2	2	4	3

Conclusion and Future Work

- We introduce a new model in which networked agents help each other to improve the accuracy of their prediction using distinct classifiers and by solely **exchanging predictions**.
- Our theoretical analyses and the experiments on real and synthetic networks show that **both model parameters** play a critical role in the study of this model and development of algorithms.
- In **future work**, we may expand this work in several directions:
 - Considering networks with negative edge weights (signed graphs)
 - Considering different improvement formulations (agent based)
 - Extending binary classification to more general learning algorithms.