

Code

Paper

ICML
International Conference
On Machine Learning

Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications

Zixuan Hu^{1,2}, Yongxian Wei¹, Li Shen^{3,4}, Zhenyi Wang⁵, Lei Li¹, Chun Yuan¹, Dacheng Tao²

1 Tsinghua University; 2 Nanyang Technological University; 3 Sun Yat-sen University;
4 JD Explore Academy; 5 University of Maryland, College Park

清华大学
Tsinghua University

NANYANG
TECHNOLOGICAL
UNIVERSITY
SINGAPORE

中山大學
SUN YAT-SEN UNIVERSITY

京东探索研究院
JD EXPLORE ACADEMY

UNIVERSITY OF
MARYLAND

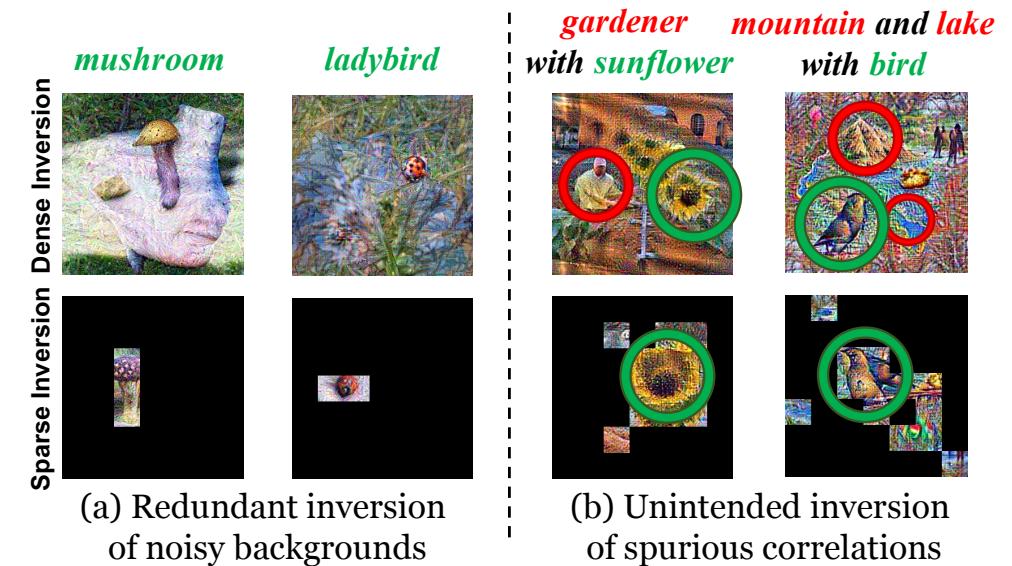
Motivation

- **Limitation of dense model inversion:** Extreme inefficiency when inverting high-resolution images from large-scale ViTs

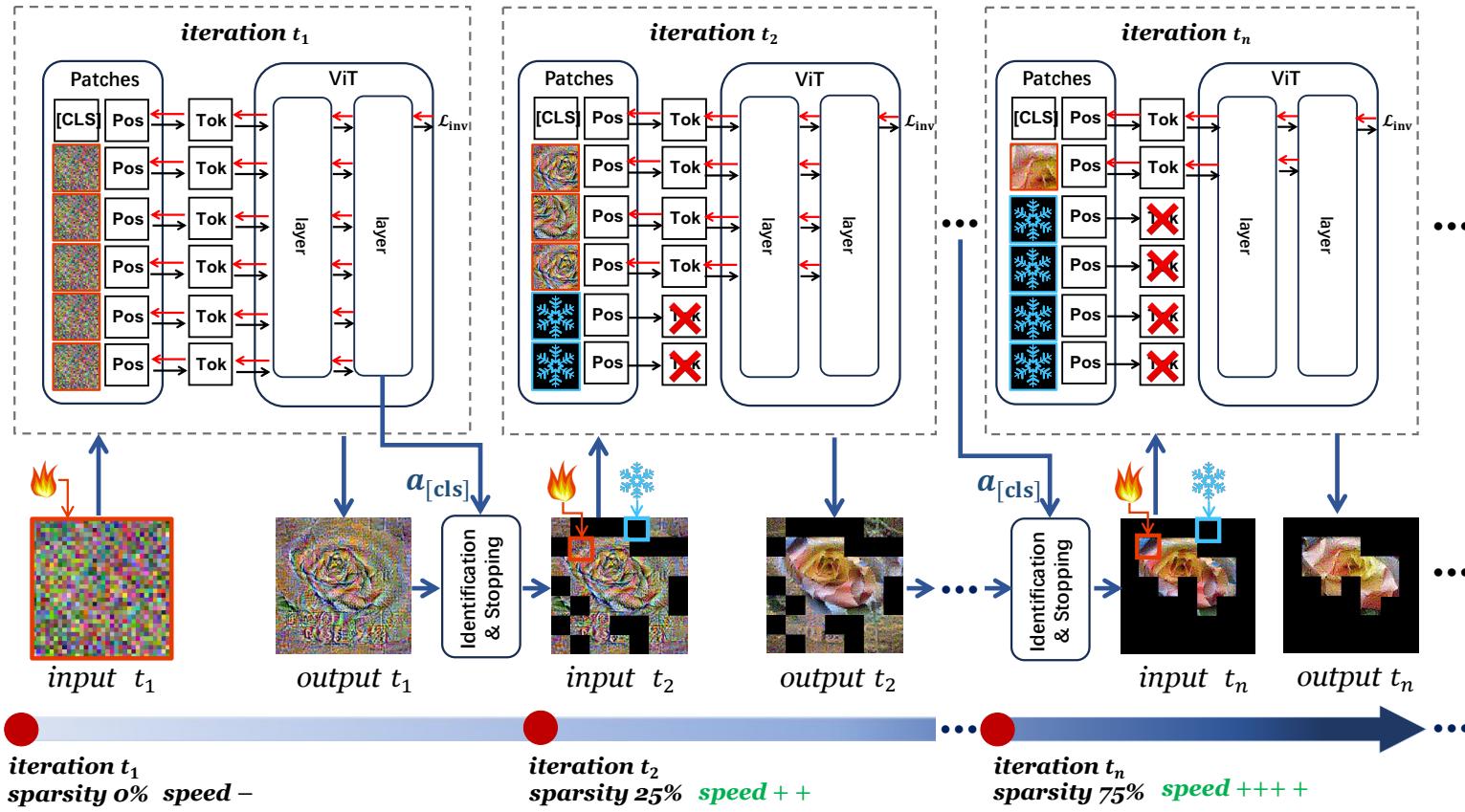
Table 1. Inefficiency of dense inversion (e.g., DeepInversion).

Resolution	Model	Inversion	Throughput (its/s)	FLOPs (G)
32×32	ResNet18	Dense	77.91	0.11
224×224	ResNet18	Dense	10.21	5.47
224×224	DeiT/16-Base	Dense	1.79	6475.63

- **Cause (a):** Redundant inversion of noisy backgrounds
- **Cause (b):** Unintended inversion of spurious correlations between foregrounds and backgrounds



Methodology

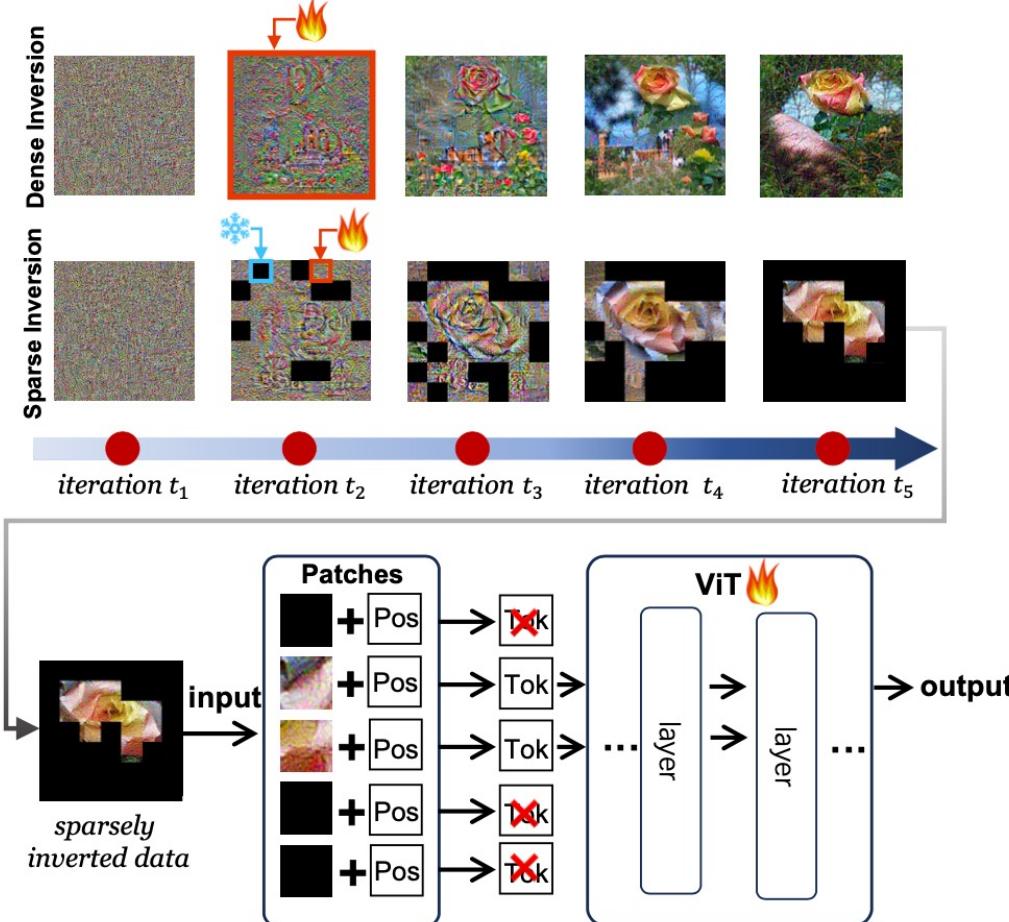


- **Semantic patch identification**
 - Identify the importance of each patch via the attention weight $a_{[cls]}$
- **Early inversion stopping**
 - Progressively stop the inversion process of K background patches with smallest $a_{[cls]}$
 - Selectively invert semantic foreground patches with high $a_{[cls]}$

$$x_{[CLS]} = a_{[CLS]} \cdot V$$

Methodology

① Recipe for Upstream Model Inversion



② Recipe for Downstream Applications (model quantization / knowledge transfer)

➤ Recipe for upstream model inversion and downstream applications

- Our approach selectively inverts semantic foreground patches while progressively stopping the inversion of uninformative background ones. When utilizing sparsely inverted data for downstream applications, we feed forward only the retained foreground patches.

➤ Downstream task I: Data-free model quantization

$$\theta_d = \lfloor \{\text{clip}(\theta_u; T_{\min}, T_{\max}) - T_{\min}\}/S \rfloor, \\ \text{where } S = \{T_{\max} - T_{\min}\}/\{2^k - 1\}.$$

➤ Downstream task II: Data-free knowledge transfer

$$\theta_d = \min_{\theta_d} \frac{1}{|\mathcal{D}_u|} \sum_{\mathbf{x} \in \mathcal{D}_u} \text{KL}(f_u(\mathbf{x}; \theta_u)/\tau; f_d(\mathbf{x}; \theta_d)/\tau)$$

Sparse Model Inversion VS. Dense Model Inversion

(1) Faster upstream model inversion

- Compared with dense inversion, our approach achieves a range of 2.57 to 3.79-fold speed increase, accompanied by a 74.09%-75.62% reduction in FLOPs and 57.42%-62.98% less GPU memory usage.

Model	Method	Model Inversion (Upstream)			
		Sparsity	Throughput (its/s) \uparrow	FLOPs (G) \downarrow	GPU Mem (MB) \downarrow
DeiT/16 -Tiny	Original	—	—	—	—
	Gaussian Noise	—	—	—	—
	PSAQ-ViT (Dense)	0	0.74	414.20	1648.08
	DeepInversion (Dense)	0	7.33	414.20	1118.69
	DeepInversion (Sparse)	77%	18.82 ($\times 2.57$)	107.32 (-74.09%)	476.32 (-57.42%)
DeiT/16 -Base	Original	—	—	—	—
	Gaussian Noise	—	—	—	—
	PSAQ-ViT (Dense)	0	0.46	6475.63	9327.12
	DeepInversion (Dense)	0	1.19	6475.63	4096.96
	DeepInversion (Sparse)	77%	4.51 ($\times 3.79$)	1578.97 (-75.62%)	1516.64 (-62.98%)

Sparse Model Inversion VS. Dense Model Inversion

(2) Better or comparable downstream performance

Downstream task I:
Data-free model quantization

Model	Method	Model Inversion (Upstream)				Quantization (Downstream)			
		Sparsity	Throughput (its/s) \uparrow	FLOPs (G) \downarrow	GPU Mem (MB) \downarrow	Prec.	Top-1	Prec.	Top-1
DeiT/16 -Tiny	Original	—	—	—	—	FP	72.14	FP	72.14
	Gaussian Noise	—	—	—	—	W4/A8	7.80	W8/A8	10.55
	PSAQ-ViT (Dense)	0	0.74	414.20	1648.08	W4/A8	64.97	W8/A8	70.54
	DeepInversion (Dense)	0	7.33	414.20	1118.69	W4/A8	64.28	W8/A8	70.27
	DeepInversion (Sparse)	77%	18.82 ($\times 2.57$)	107.32 (-74.09%)	476.32 (-57.42%)	W4/A8	64.04	W8/A8	70.13
DeiT/16 -Base	Original	—	—	—	—	FP	81.85	FP	81.85
	Gaussian Noise	—	—	—	—	W4/A8	11.09	W8/A8	14.72
	PSAQ-ViT (Dense)	0	0.46	6475.63	9327.12	W4/A8	76.73	W8/A8	78.93
	DeepInversion (Dense)	0	1.19	6475.63	4096.96	W4/A8	75.99	W8/A8	78.58
	DeepInversion (Sparse)	77%	4.51 ($\times 3.79$)	1578.97 (-75.62%)	1516.64 (-62.98%)	W4/A8	77.51	W8/A8	79.63

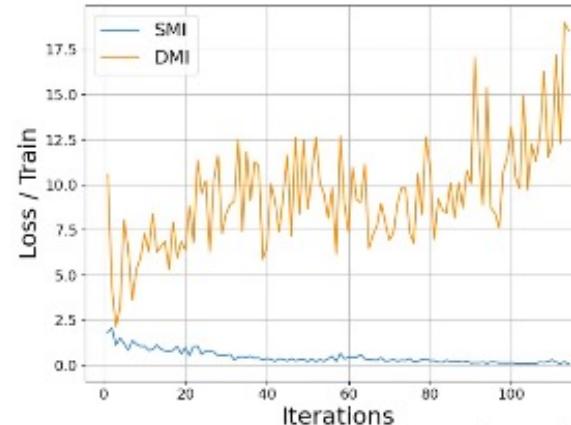
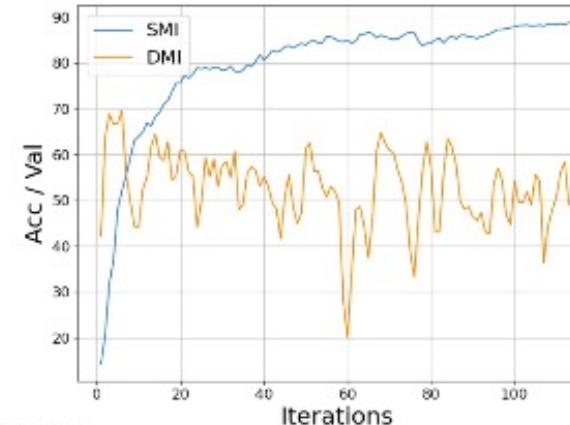
Table 4. Knowledge-transfer results on CIFAR10/100 datasets.

Model	Method	Knowledge Transfer (Downstream)			
		Dataset	Top-1	Dataset	Top-1
DeiT/16 -Tiny	Teacher	CIFAR-10	90.23	CIFAR-100	71.66
	DeepInversion (Dense)	CIFAR-10	69.51	CIFAR-100	70.32
	DeepInversion (Sparse)	CIFAR-10	90.08	CIFAR-100	70.48
DeiT/16 -Base	Teacher	CIFAR-10	95.36	CIFAR-100	79.41
	DeepInversion (Dense)	CIFAR-10	90.02	CIFAR-100	74.88
	DeepInversion (Sparse)	CIFAR-10	95.10	CIFAR-100	74.53

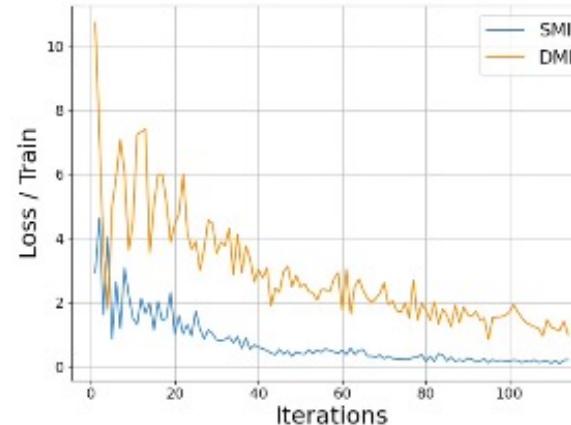
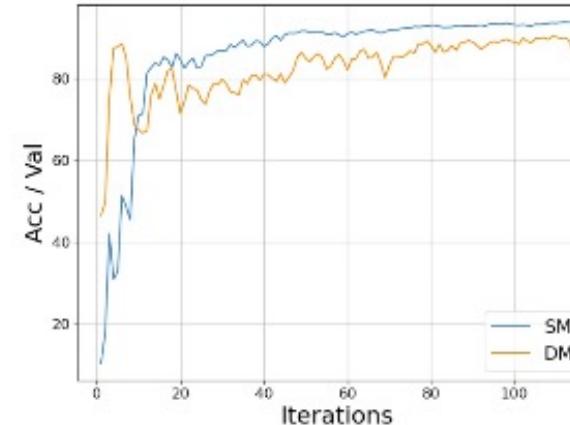
Downstream task II:
Data-free knowledge transfer

Sparse Model Inversion VS. Dense Model Inversion

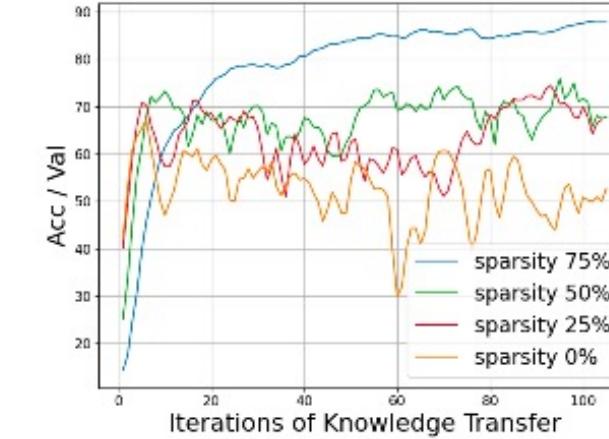
(3) Faster and more stable downstream convergence



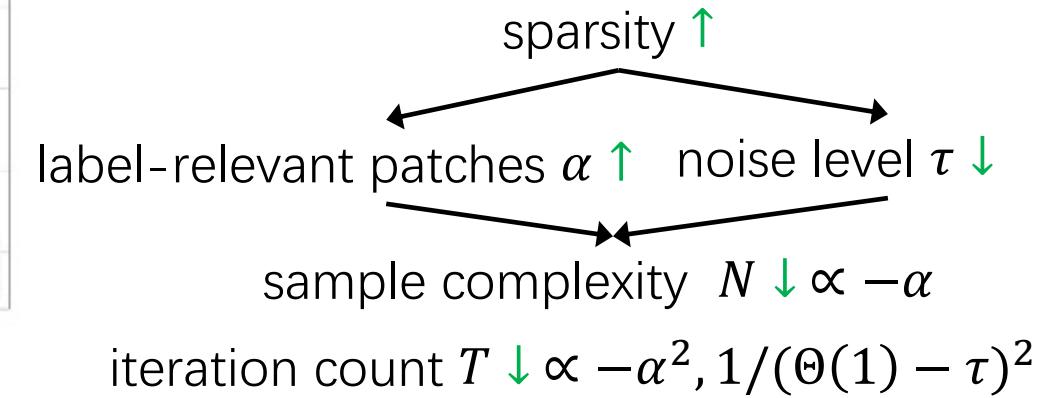
(upper) DeiT/16-Tiny



(below) DeiT/16-Base



Theoretical Analysis



Visualization

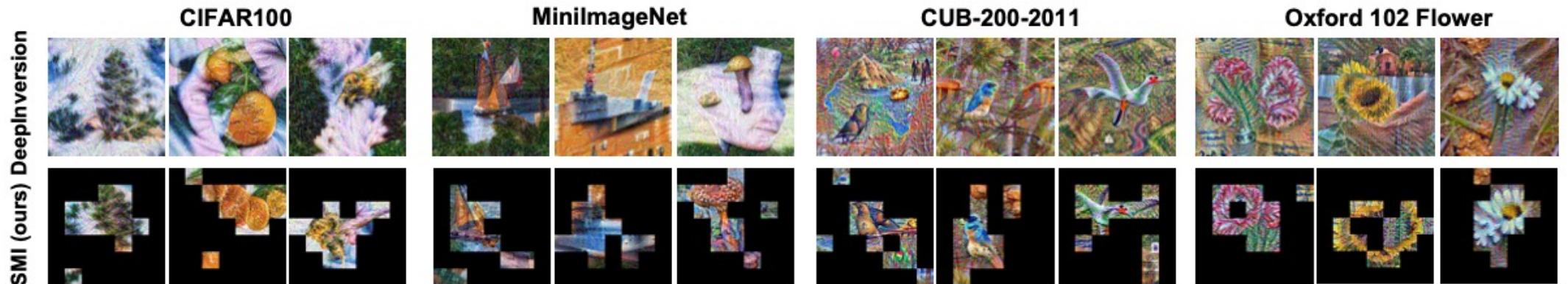


Figure 5. Our inverted images of 224×224 pixels from ViT/32-Base encompass a wide range of datasets, from natural images (CIFAR100 and MiniImageNet) to more specialized categories (Oxford 102 Flower for various flower species and CUB-200-2011 for bird species).

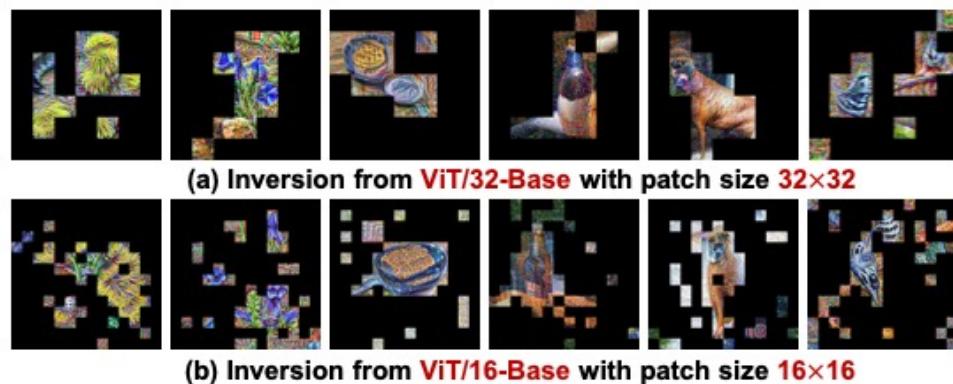


Figure 6. Inversion with different patch-size settings.

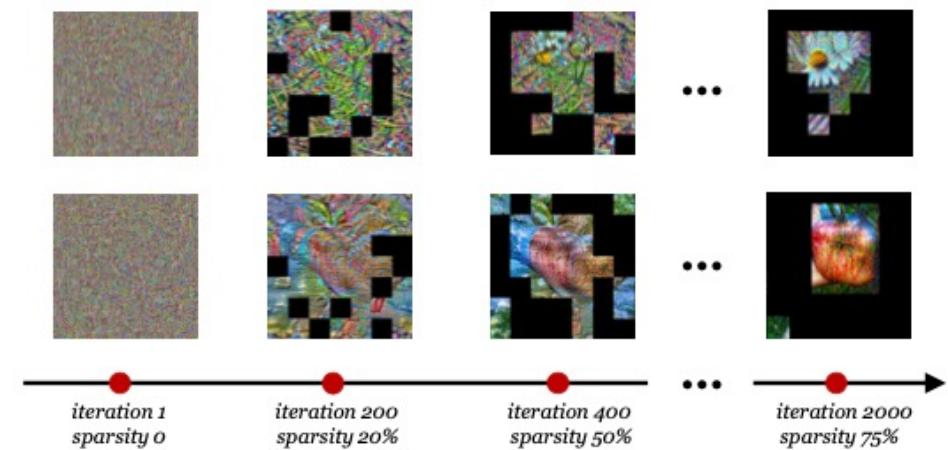


Figure 7. Visualization of the inversion process.

Code

Paper

ICML
International Conference
On Machine Learning

Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications

Zixuan Hu^{1,2}, Yongxian Wei¹, Li Shen^{3,4}, Zhenyi Wang⁵, Lei Li¹, Chun Yuan¹, Dacheng Tao²

1 Tsinghua University; 2 Nanyang Technological University; 3 Sun Yat-sen University;
4 JD Explore Academy; 5 University of Maryland, College Park

清华大学
Tsinghua University

NANYANG
TECHNOLOGICAL
UNIVERSITY
SINGAPORE

中山大學
SUN YAT-SEN UNIVERSITY

京东探索研究院
JD EXPLORE ACADEMY

UNIVERSITY OF
MARYLAND