Tandem Transformers for Inference Efficient LLMs

Aishwarya P S, Pranav Ajit Nair, Yashas Samaga, Toby Boyd, Sanjiv Kumar, Prateek Jain*, Praneeth Netrapalli*

Google DeepMind, Google Research

The Problem

- A key factor contributing to high serving cost and latency of LLMs is their autoregressive nature where tokens are produced sequentially.
- This restricts the full utilization of ML accelerators which are optimized for matrix-matrix multiplications rather that matrix-vector and element-wise operations, and memory transfers.

Google

Speculative Decoding [1] addresses the aforementioned problem by:

- Using a small drafter to autoregressively speculate blocks of tokens (thus, faster memory transfers).
- Using a larger primary model to verify (and correct) the output of the drafter, for the entire block in parallel (thus, matrix-matrix operations).

Can we improve the drafter?

- Can we have a smaller/faster drafter? Block parallel decoding [2], heuristic drafter [3].
- Can we have a more aligned drafter? An obvious choice would be distillation, *but can we do better*?

Two key conceptual tasks of an LLM: **Understanding** and **Generation**.

- Classically, encoder-decoder models decouple these and often use **larger encoder** models (for understanding) with **smaller decoder** models (for generation).
- Decoder-only architecture couples understanding and generation.
- Can we decouple capacity required for these?

[1] Fast inference from Transformers via Speculative Decoding by Leviathan et al. ICML 2023

[2] MEDUSA: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads by Cai et al. ICML 2024

[3] Rest: Retrieval-based speculative decoding by He et al. 2023

Tandem Transformers (Block length: 2)

- A novel architecture where the drafter *attends* to the projected higher quality representations from the primary model to produce i) higher quality ii) further aligned output.
- Tandem Transformers decouple query understanding and response Generation.

Tandem Transformers (Block length: 2)

Training Tandem Transformers

- We train a tandem model with P = PaLM2-Bison and D = PaLM2-Gecko
- In terms of size, PaLM2-Gecko < PaLM2-Otter < PaLM2-Bison
- After initializing with pretrained models, freeze P and train only the projection layers and D.
- Tandem-CE: trained with CE loss wrt ground truth labels
- Tandem-Distill: continue training Tandem-CE also with CE wrt PaLM2-Bison output logits.
- PaLM2-Gecko-Distill: continue training PaLM2-Gecko with distillation loss as above.

	PaLM2- Gecko	PaLM2- Gecko-Distil	Tandem-CE (ours)	Tandem- Distil (ours)
Accuracy (GT)	55.06	56.50	58.35	58.61
CE loss (GT)	2.14	2.12	1.94	1.99
Relative accuracy	74.64	75.30	80.00	81.00
Relative TV distance	0.391	0.318	0.178	0.141

Pretraining Results

Can we use Tandem Transformers without worrying about accuracy?

Background: SPEED - Speculative Decoding

SPEED

Less backtracking More speedup.

SPEED+Tandem

SPEED+Tandem

SPEED+Tandem

P = PaLM2-Bison D = PaLM2-Gecko

Results

Dataset	num- samples	PaLM2-Gecko-Distil (baseline)	Tandem-Distil (ours)	Tandem-Distil (ours ; relative gain)
Reddit	$1 \\ 4$	2.169× ($\gamma = 7$) 1.919× ($\gamma = 5$)	2.471× ($\gamma = 7$) 2.234× ($\gamma = 7$)	$egin{array}{c} 1.139 imes 1.164 imes \end{array}$
CNN/DailyMail	$1 \\ 4$	2.219× ($\gamma = 7$) 1.940× ($\gamma = 5$)	$2.473 \times (\gamma = 7)$ $2.190 \times (\gamma = 7)$	1.115 imes 1.129 imes
LM1B	$\frac{1}{4}$	$2.348 \times (\gamma = 7)$ $2.011 \times (\gamma = 5)$	$2.610 \times (\gamma = 7)$ $2.359 \times (\gamma = 7)$	$egin{array}{c} 1.112 imes \ 1.173 imes \end{array}$

Tandem Transformer's improvements over SPEED + Distillation

 γ optimized for each setting – Tandem can use larger more effectively.

Tandem Transformers + Adaptive block length's improvements over the baseline, and Tandem-Distil + SPEED (i.e., penultimate column from the table above).

Dataset	PaLM-Bison	Tandem-Distil + SPEED	
Reddit	$2.582 \times (\gamma_{\rm max} = 17)$	1.045 imes	
CNN/ DailyMail	$2.599 \times (\gamma_{\max} = 17)$	1.051 imes	
LMIB	$2.853 \times (\gamma_{\rm max} = 27)$	1.093 imes	

Adaptive Block Length: After every token predicted by the drafter model, we use a small, inexpensive router to determine whether to continue predicting with the secondary model, or verify the tokens generated so far with the primary model.

Dataset	num- samples	PaLM2-XXXS-Distil (baseline)	Tandem-Distil (ours)	Tandem-Distil (ours ; relative gain)
LM1B	1	$2.445 \times (\gamma = 5)$	$3.040 \times (\gamma = 5)$	1.243 imes
	4	$1.821 \times (\gamma = 5)$	$2.488 \times (\gamma = 5)$	1.366 imes

Smaller Drafter: Replacing PaLM2-Gecko with PaLM2-XXXS for Tandem training. Tandem Transformers give **larger gains with a smaller drafter**.

Tandem Transformers as a standalone model: Tandem Transformers can be used a standalone model (without SPEED) to exploit the full spectrum of latency vs quality. Please refer to the paper for model details.

Dataset	PaLM2-Gecko	Tandem-Distil (ours)	PaLM2-Otter	PaLM2-Bison
Generative-tasks	28.8	44.0	51.1	57.5
MBPP	4.8	21.2	20.8	30.4
WMT22-1shot-to-nonenglish	35.1	44.1	48.4	50.5
TydiQA-GoldP	55.0	69.0	69.7	73.4
SuperGLUE	62.8	78.8	79.0	81.5
Speedup over PaLM2-Bison	6.40 imes	2.75 imes	2.36 imes	$1 \times$

Conclusion

- Inference latency is a big bottleneck with very large room for improvement.
- Tandem Transformers can be used a standalone model (without SPEED) to exploit the full spectrum of latency vs quality. It can produce 1.16x speedup over PaLM2-Otter with similar quality.
- Tandem Transformers within the SPEED framework can give upto **3x** speedup over PaLM2-Bison and **1.36x** speedup over SPEED + Distillation.

Future Directions

- Other variants of Tandem Transformers, e.g., using LLM for plan generation and SLM for autoregressive token generation using plan.
- Tandem Transformers as an alternative to LoRA for fine-tuning.