

Visual Learning And Reasoning

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

ICML
International Conference
On Machine Learning

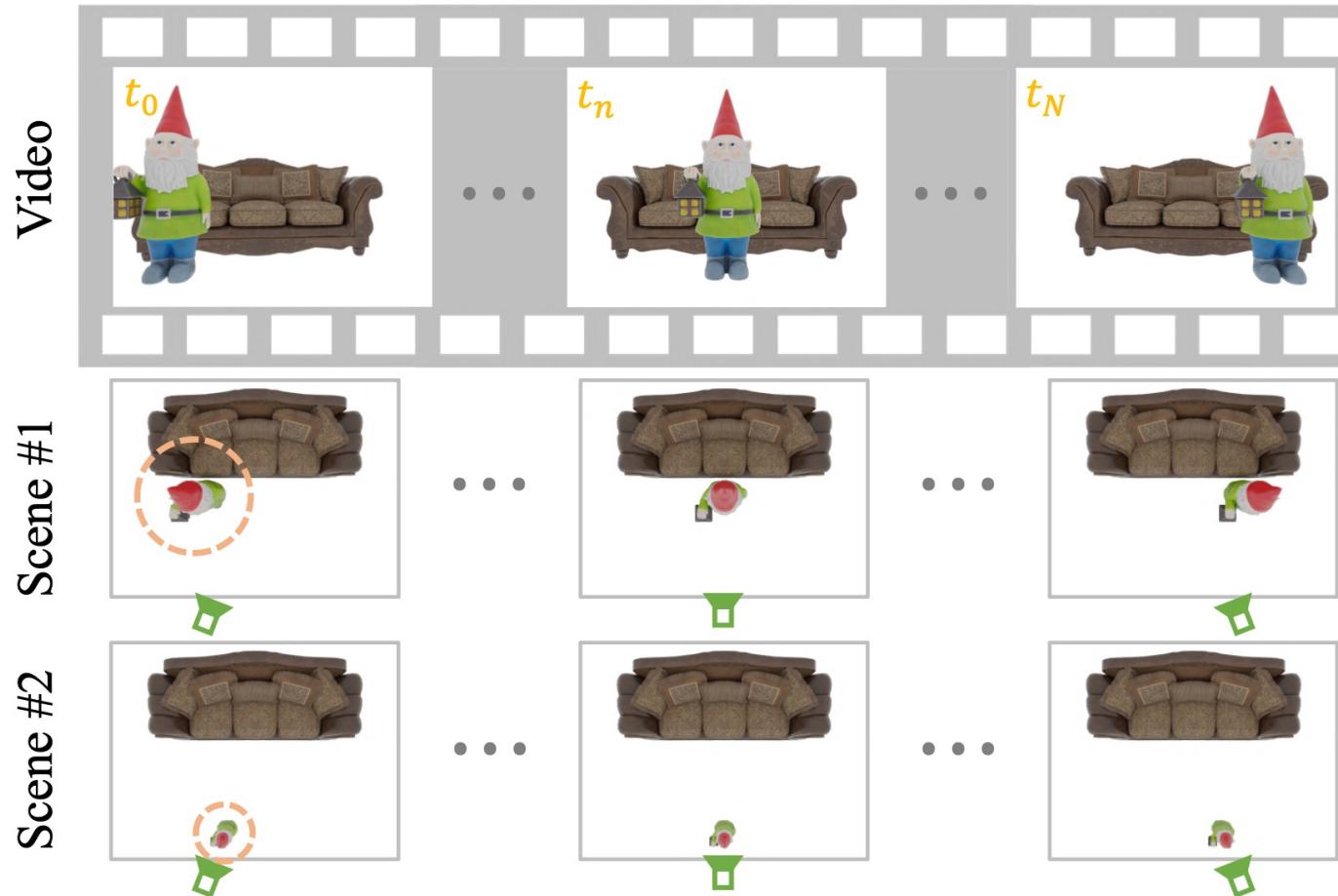
OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos

Ziyang Song, Jinxi Li, Bo Yang

vLAR Group, The Hong Kong Polytechnic University

Introduction

Our task: Reconstruct dynamic 3D scenes from monocular videos



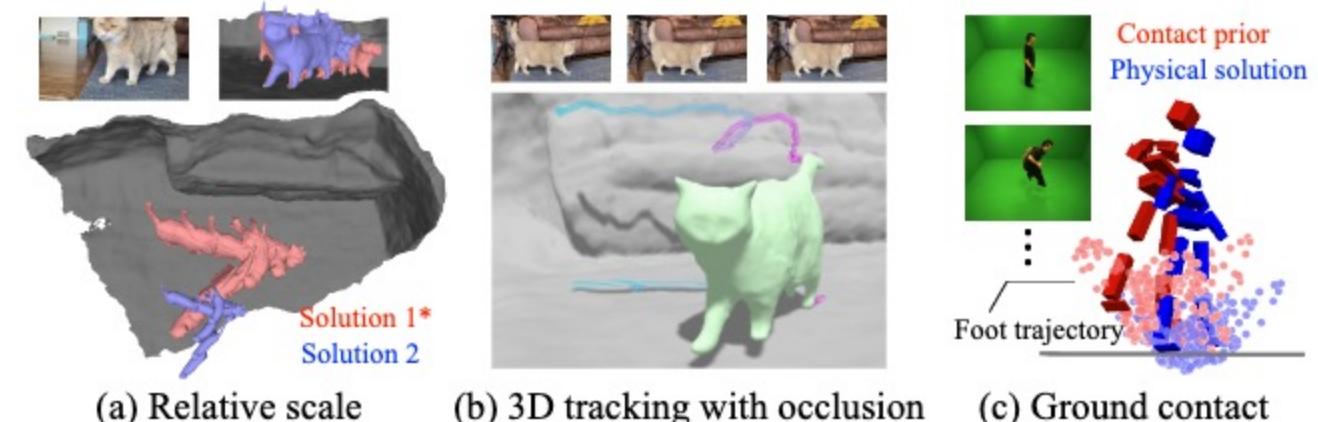
Highly ill-posed problem:
Many correct 3D scenes correspond to the video

Introduction

Prior works

Monocular depths [1][2]

Physical constraints [3]



Finding a single solution:

- Not general enough
- Additional constraints may not always be reliable

[1] Z. Li, S. Niklaus, N. Snavely, et al. Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes. CVPR, 2021.

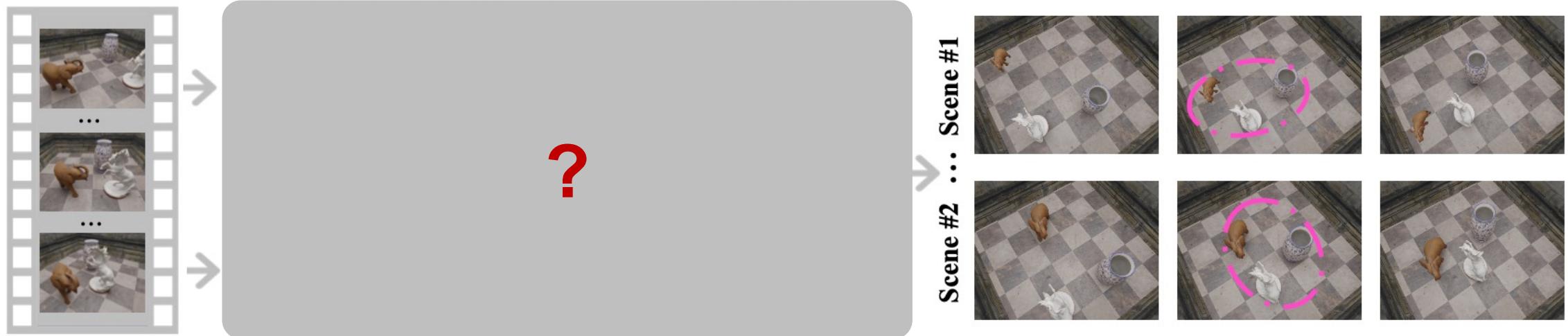
[2] C. Gao, A. Saraf, J. Kopf, et al. Dynamic View Synthesis from Dynamic Monocular Video. ICCV, 2021.

[3] G. Yang, S. Yang, J. Z. Zhang, et al. PPR: Physically Plausible Reconstruction from Monocular Videos. ICCV, 2023.

Introduction

Our goal:

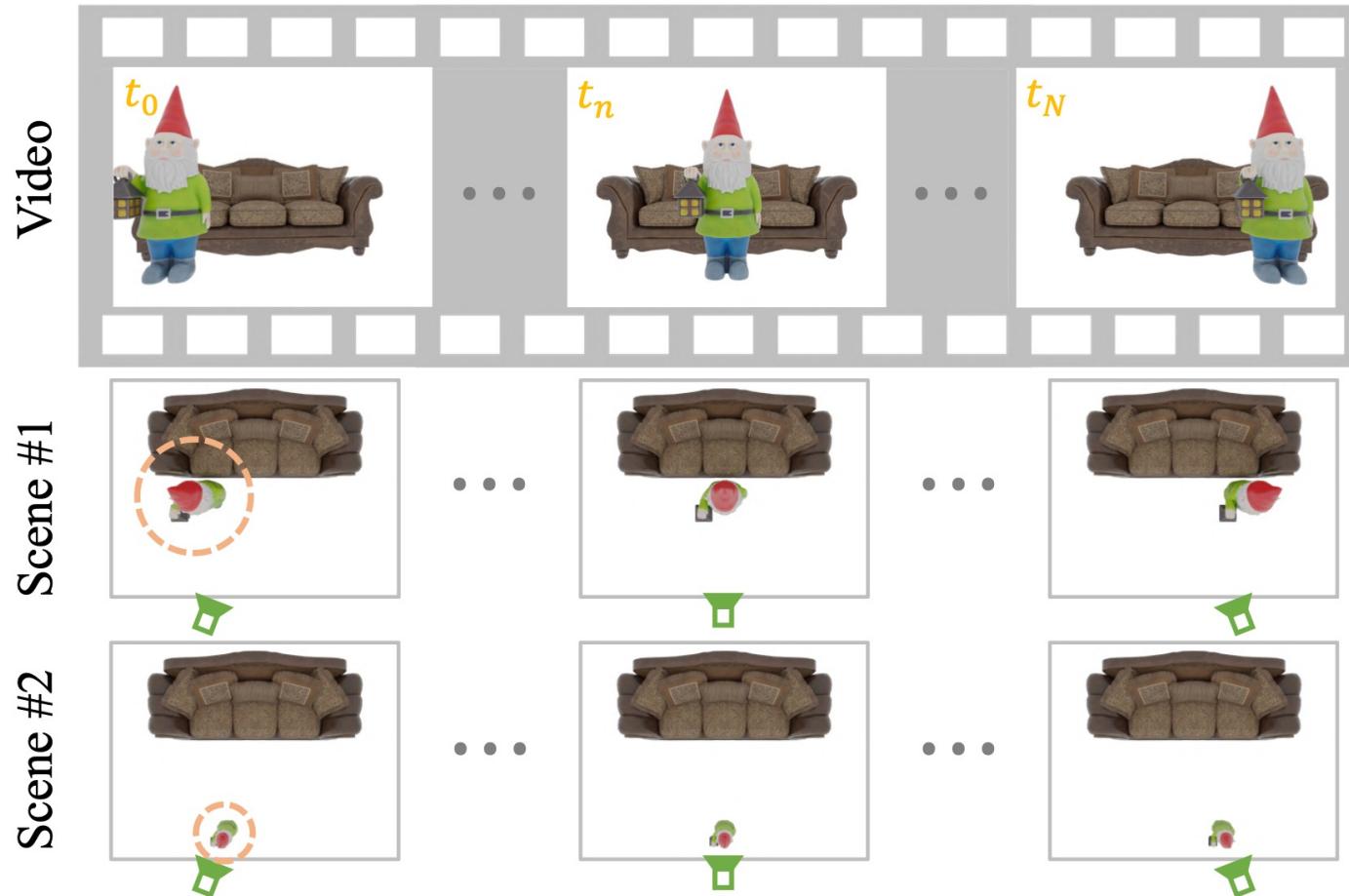
Learn all plausible 3D scene configurations that match the input video



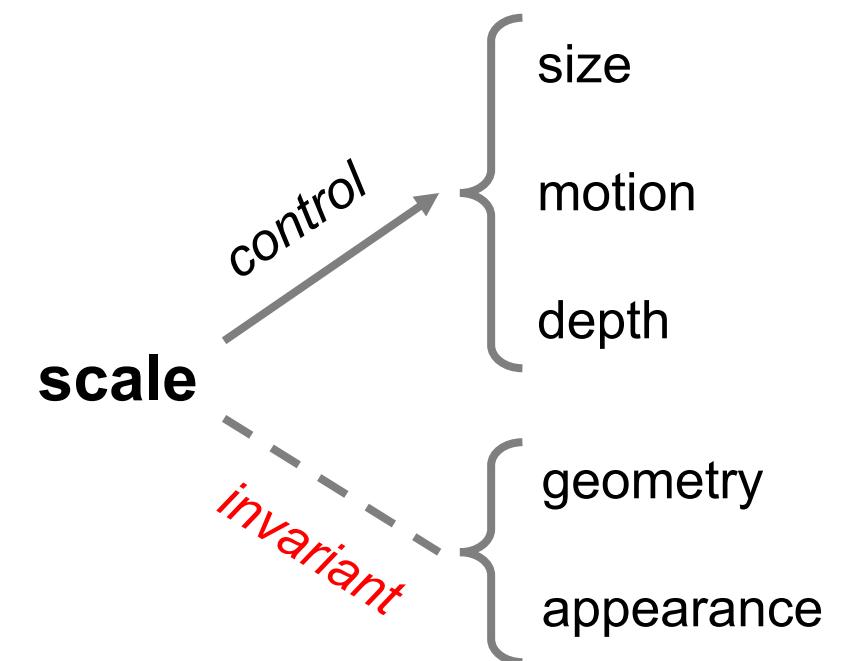
Q1: How to represent?

Q2: How to learn?

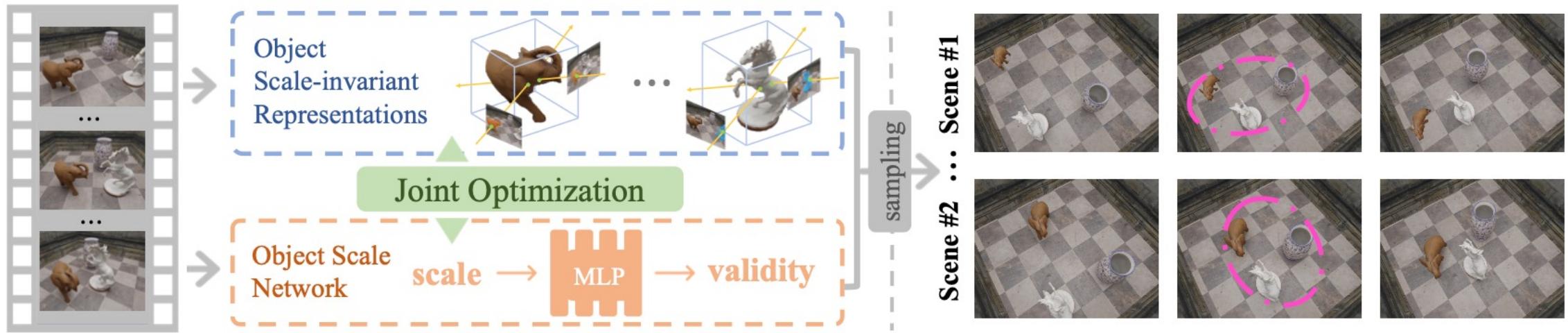
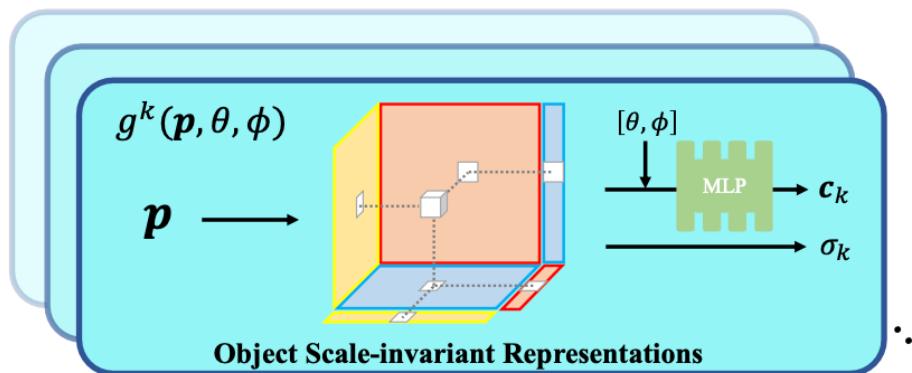
How to represent?



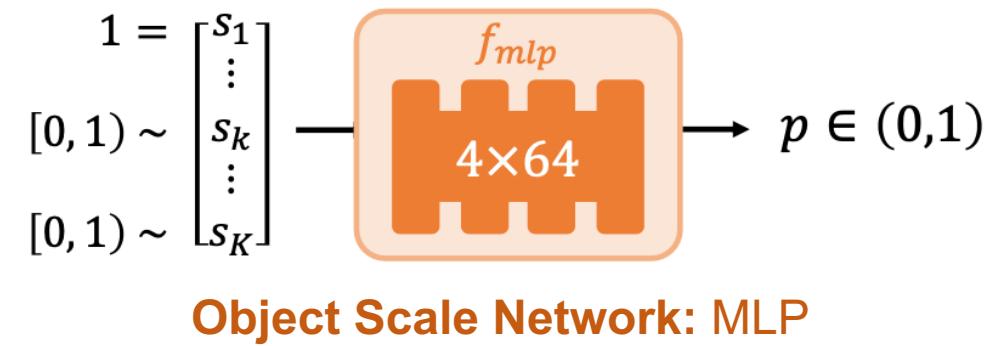
For a rigid object:



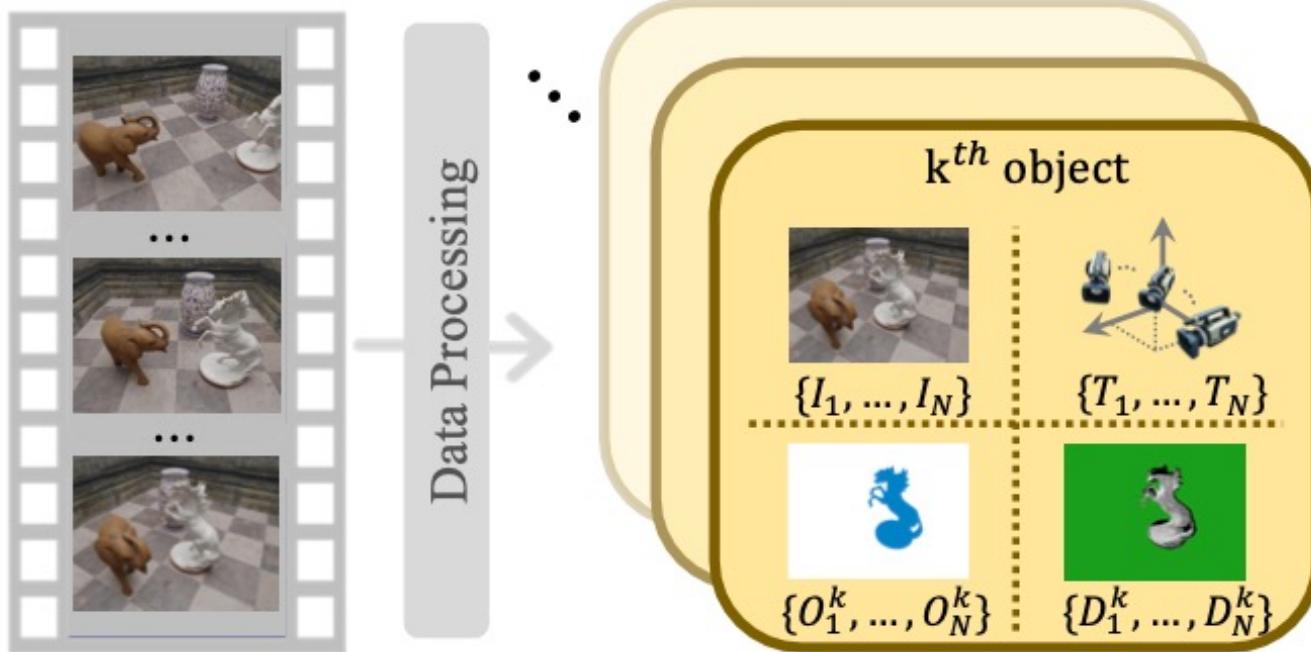
Framework



Object Scale-invariant Representations: TensoRF^[1]



How to learn?



Preprocessing:

- SAM [1] & TAM [2]
- RAFT [3]
- SfM [4]

Available information:

- RGB
- segmentation masks
- camera-to-object poses
- per-object relative depths

[1] A. Kirillov, E. Mintun, N. Ravi, et al. Segment Anything. ICCV, 2023.

[2] J. Yang, M. Gao, Z. Li, et al. Track Anything: Segment Anything Meets Videos. arXiv:2304.11968, 2023.

[3] Z. Teed, and J. Deng. RAFT: Recurrent All Pairs Field Transforms for Optical Flow. ECCV, 2020.

[4] J. L. Schonberger, and J.-M. Frahm. Structure-from-Motion Revisited. CVPR, 2016.

How to optimize object representations?

Sample one valid scale combination

Composite rendering [1]

Scaled composite rendering

$$\ell_{rgb}^{scene} = \sum_{\mathbf{r}^k} \|\mathbf{c}(\mathbf{r}^k) - \bar{\mathbf{c}}(\mathbf{r}^k)\|$$

$$\ell_{depth}^{scene} = \sum_{\mathbf{r}^k} \|d(\mathbf{r}^k) - s_k * \bar{d}(\mathbf{r}^k)\|$$

$$\ell_{seg}^{scene} = \sum_{\mathbf{r}^k} CE\left(\mathbf{o}(\mathbf{r}^k), \bar{\mathbf{o}}(\mathbf{r}^k)\right)$$

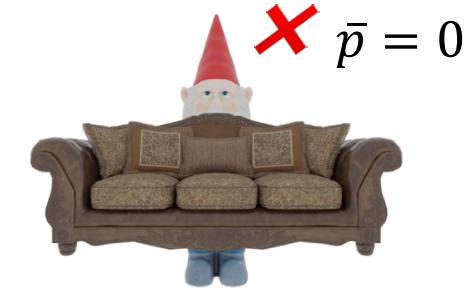
How to optimize object scale network?

Sample many (valid / invalid) scale combinations

pseudo GT = **segmentation** (inter-object occlusion) correctness

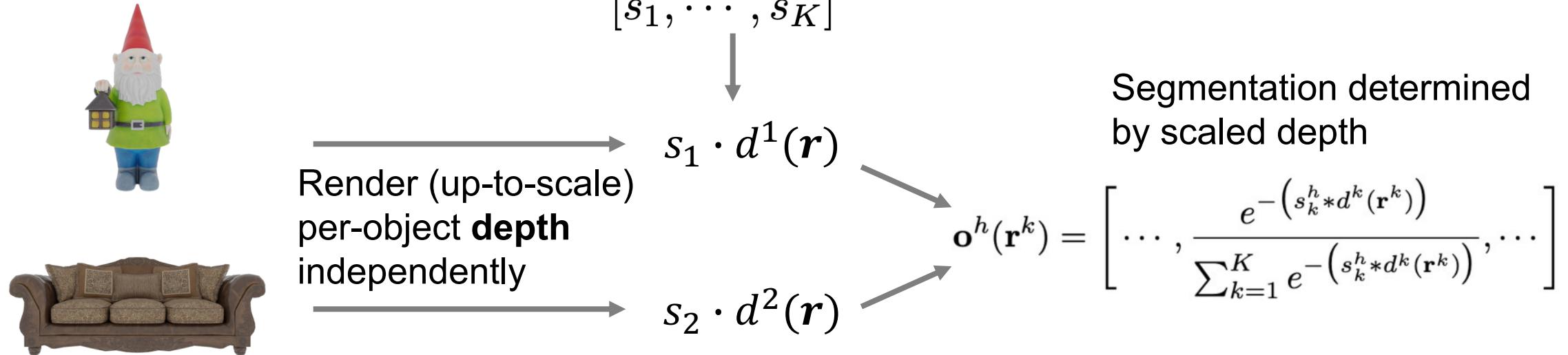
$$\bar{p}^h = \sum \left(|\mathbf{o}^h(\mathbf{r}^k)| * \bar{\mathbf{o}}(\mathbf{r}^k) \right) \rightarrow 0/1$$

$$\ell_{bce} = \sum_{\mathbf{r}^k} \left(\sum_h BCE(p^h, \bar{p}^h) \right)$$



Soft Z-buffer rendering

Rendering under H scale combinations is time-consuming



Comparison

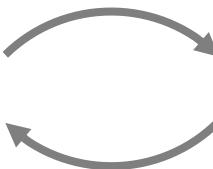
- **Scaled composite rendering:** $H \times 3D$ volume rendering
- **Soft Z-buffer rendering:** $1 \times 3D$ volume rendering + $H \times 2D$ image blending

Joint training procedure

Stage 1 – Bootstrapping per-object representations

Stage 2 – Alternative optimization

Optimize object representations



Optimize object scale network

Results

Input Monocular Video

Multiple Possible Dynamic 3D Scenes

S^1

S^3

S^2

S^4

Observed View

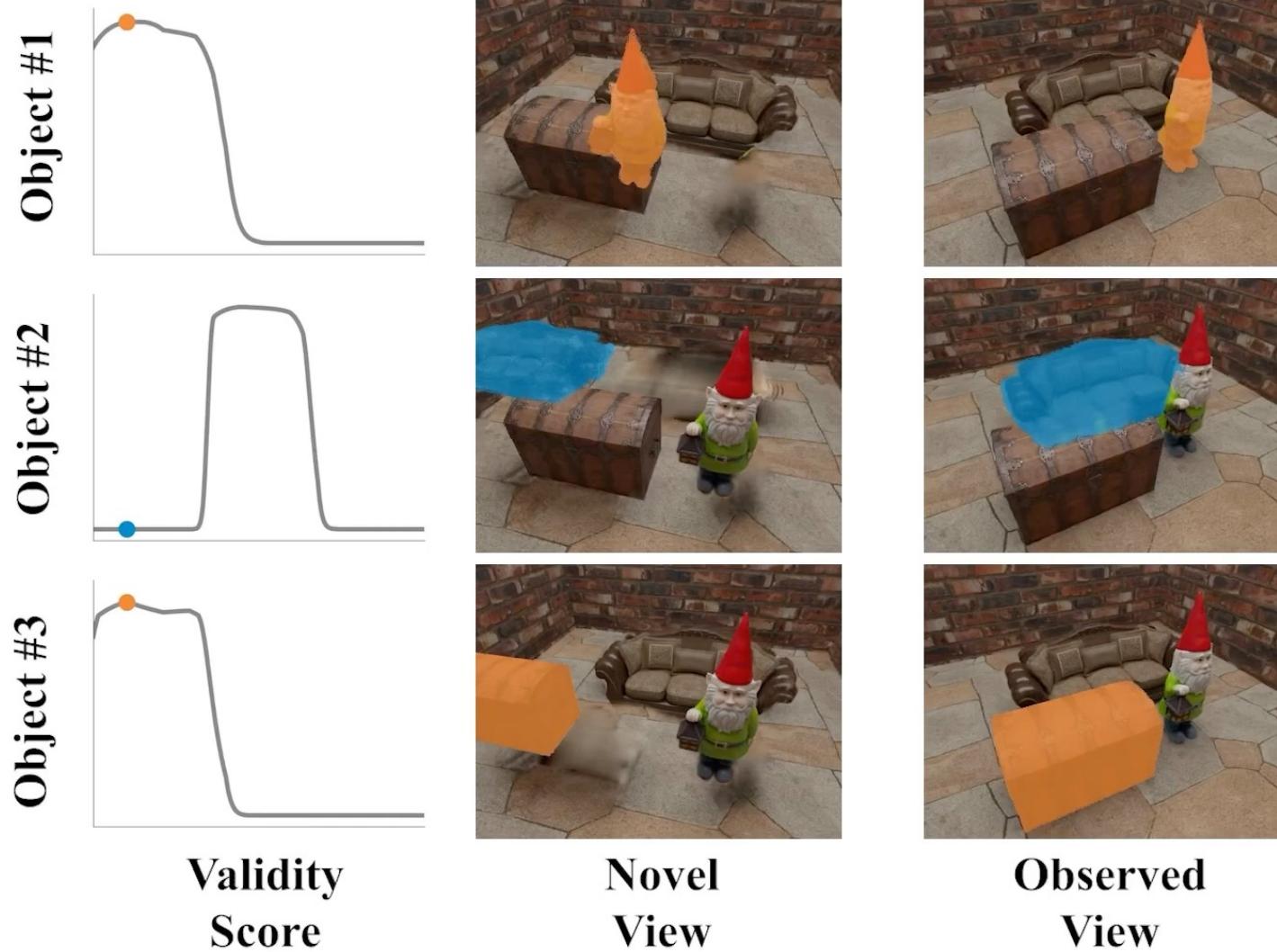
Novel View

Observed View

Novel View

Results

Analysis of validity scores

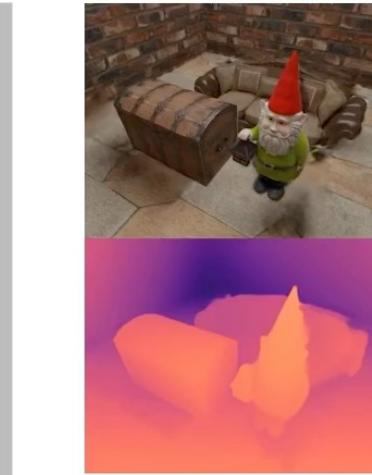


Fixed timestamp = 0
Change object scale

Results

Dynamic novel view synthesis

w/ MiDaS depth



OSN (Ours)

w/ SfM depth

GT

NSFF

DynNeRF

TiNeuVox

Ours: the best of 1000 samples

Results

Dynamic novel view synthesis

Table 1. Quantitative results of all methods for dynamic novel view synthesis on three datasets. The methods are trained with different depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

Depth Sup.	Method	Dynamic Indoor Scene Dataset				Oxford Multimotion Dataset			NVIDIA Dynamic Scene Dataset		
		PSNR↑	SSIM↑	LPIPS↓	SSIMAE↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
1)	NSFF(Li et al., 2021)	21.428	0.720	0.313	0.378	16.687	0.616	0.249	21.766	0.669	0.229
	DynNeRF(Gao et al., 2021)	21.479	0.752	0.277	0.417	16.858	0.627	0.244	25.705	0.827	0.117
	TiNeuVox(Fang et al., 2022)	21.705	0.655	0.306	0.484	16.433	0.613	0.325	22.922	0.618	0.262
	HexPlane(Cao & Johnson, 2023)	18.637	0.581	0.480	0.962	17.084	0.631	0.221	20.169	0.555	0.286
2)	NSFF(Li et al., 2021)	20.900	0.698	0.349	0.494	17.094	0.623	0.244	27.459	0.861	0.075
	DynNeRF(Gao et al., 2021)	22.272	0.767	0.257	0.309	16.521	0.622	0.259	29.452	0.895	0.054
	TiNeuVox(Fang et al., 2022)	23.288	0.698	0.269	0.329	18.508	0.668	0.197	23.029	0.621	0.193
	HexPlane(Cao & Johnson, 2023)	17.968	0.528	0.535	1.395	15.843	0.576	0.338	19.312	0.471	0.334
3)	NSFF(Li et al., 2021)	21.280	0.684	0.347	0.467	17.093	0.616	0.245	23.733	0.733	0.194
	DynNeRF(Gao et al., 2021)	21.421	0.742	0.296	0.509	16.786	0.624	0.281	24.498	0.771	0.176
	TiNeuVox(Fang et al., 2022)	22.197	0.685	0.285	0.368	18.043	<u>0.670</u>	0.208	22.691	0.591	0.215
	HexPlane(Cao & Johnson, 2023)	20.217	0.623	0.373	0.458	17.137	0.631	0.203	23.220	0.720	0.150
	OSN(Ours)	25.984	0.861	0.115	0.094	19.671	0.695	0.155	29.588	0.892	0.053
2)+3)	Total-Recon(Song et al., 2023)	24.695	0.841	0.128	0.137	18.331	0.655	0.173	27.822	0.880	0.059

Results

Dynamic novel view synthesis -- multiple GT

Table 2. Quantitative results of all methods for dynamic novel view synthesis on synthetic “Gnome House” scene with 50 different ground truth scale combinations. The average performance along with standard deviations on 50 groups of ground truths are reported. The methods are trained with different depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

Depth Sup.	Method	50 Ground Truth Scenes of Gnome House			
		PSNR↑	SSIM↑	LPIPS↓	SSIMAE↓
1)	NSFF(Li et al., 2021)	19.088±1.514	0.636±0.026	0.385±0.029	0.559±0.183
	DynNeRF(Gao et al., 2021)	18.846±1.227	0.645±0.023	0.380±0.027	0.540±0.156
	TiNeuVox(Fang et al., 2022)	18.361±1.159	0.539±0.026	0.414±0.033	0.600±0.140
	HexPlane(Cao & Johnson, 2023)	16.762±0.130	0.420±0.002	0.708±0.005	1.688±0.098
2)	NSFF(Li et al., 2021)	18.993±1.485	0.592±0.024	0.465±0.027	0.582±0.180
	DynNeRF(Gao et al., 2021)	18.759±1.398	0.639±0.029	0.378±0.032	0.579±0.194
	TiNeuVox(Fang et al., 2022)	18.978±1.249	0.560±0.028	0.394±0.035	0.619±0.159
	HexPlane(Cao & Johnson, 2023)	17.325±0.605	0.434±0.015	0.626±0.019	1.993±0.119
3)	NSFF(Li et al., 2021)	18.214±0.948	0.492±0.016	0.536±0.020	0.776±0.137
	DynNeRF(Gao et al., 2021)	18.767±1.270	0.639±0.026	0.382±0.029	0.554±0.160
	TiNeuVox(Fang et al., 2022)	18.776±1.155	0.556±0.027	0.396±0.033	0.553±0.154
	HexPlane(Cao & Johnson, 2023)	18.464±0.767	0.492±0.019	0.480±0.025	0.660±0.130
OSN(Ours)		22.940±1.004	0.784±0.022	0.160±0.021	0.125±0.078
2)+3)	Total-Recon(Song et al., 2023)	18.768±1.535	0.666±0.032	0.295±0.046	0.612±0.212

Conclusion & Future Directions

Our contributions:

- First work to represent 3D scenes in many ways from a monocular video
- An object scale network with a joint optimization method
- Effectiveness on synthetic and real-world datasets

Future directions:

- Infinite solutions for monocular dynamic scenes with deformable objects

Visual Learning And Reasoning

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

ICML
International Conference
On Machine Learning

Thanks

paper & code: Coming soon!

contact: ziyang.song@connect.polyu.hk