Gaussian Plane-Wave Neural Operator for Electron Density Estimation

Seongsu Kim and Sungsoo Ahn

Pohang University of Science and Technology (POSTECH) ICML '24

Presenter: Seongsu Kim

seongsukim@postech.ac.kr sungsoo.ahn@postech.ac.kr

Summary

- Proposed the machine learning model for estimating electron density
- Used Gaussian-type orbital (GTO) and Plane Wave (PW) basis function
- Our framework is a Neural Operator since it is the mapping btw. functions
- Our framework satisfy SE(3)-equivariance and periodic boundary conditions
- We empirically verify the effectiveness of mixing bases

Electron density estimation

- Electron density is the probability of finding electrons in a specific area
 - According to quantum mechanics, the exact location of an electron cannot be predicted, due to uncertainty principle
 - We can only find the probability of electron existence at given point

Electron density plot of water (H_2O) The surface implies the isosurface where probability is identical

Problem Setting

Application of electron density

- Electron density can be used to predict the material's atomic properties (energy, reactivity, ...)
- From density functional theory (DFT), the properties of molecular system can be determined by the functionals depends on the electron density

Battery cathodes design

Drug design

Solar cell materials design

[1] Becke, Axel D. "Density-functional exchange-energy approximation with correct asymptotic behavior." *Physical review A* 38.6 (1988): 3098.

[2] Wu, Xi, et al. "Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials." *Progress in Natural Science: Materials International* 29.3 (2019): 247-255.
 [3] Rozhenko, Alexander B. "Density functional theory calculations of enzyme-inhibitor interactions in medicinal chemistry and drug design." *Application of computational techniques in pharmacy and medicine* (2014): 207-240.
 [4] Chang, Junli, et al. "Lead-free perovskite compounds CsSn 1- x Ge x 1 3- y Br y explored for superior visible-light absorption." Physical Chemistry Chemical Physics 23.26 (2021): 14449-14456.

Problem Setting

Application of electron density

- Electron density can be used to predict the material's atomic properties (energy, reactivity, ...)
- From density functional theory (DFT), the properties of molecular system can be determined by the functionals depends on the electron density

Battery cathodes design

Drug design

Solar cell materials design

[1] Becke, Axel D. "Density-functional exchange-energy approximation with correct asymptotic behavior." *Physical review A* 38.6 (1988): 3098.

[2] Wu, Xi, et al. "Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials." Progress in Natural Science: Materials International 29.3 (2019): 247-255.
 [3] Rozhenko, Alexander B. "Density functional theory calculations of enzyme-inhibitor interactions in medicinal chemistry and drug design." Application of computational techniques in pharmacy and medicine (2014): 207-240.
 [4] Chang, Junli, et al. "Lead-free perovskite compounds CsSn 1- x Ge x I 3- y Br y explored for superior visible-light absorption." Physical Chemistry Chemical Physics 23.26 (2021): 14449-14456.

Electron density estimation

We learn the mapping between molecules to the electron density function

Molecular graph Sparse scalar field)

Position of atoms $X = [x_1, \cdots, x_n]$ Atomic features $A = [a_1, \cdots, a_n]$ **Electron density function** (Continuous scalar field)

Probability (scalar) at query point $ho(x_q)\in\mathbb{R}$

(Sparse) function to (continuous) function mapping "Neural Operator"

Problem Setting

Electron density estimation

We learn the mapping between molecules to the electron density function

Molecular graph (Sparse scalar field)

Position of atoms $X = [x_1, \cdots, x_n]$ Atomic features $A = [a_1, \cdots, a_n]$ Electron density function (Continuous scalar field)

Probability (scalar) at query point $ho(x_q)\in\mathbb{R}$

(Sparse) function to (continuous) function mapping "Neural Operator"

Overview

- Our GPWNO makes two parallel predictions, GTO- and PW-based predictions.
 - GTO-based prediction utilizes the coefficient learning of the GTO basis function
 - PW-based prediction utilizes the lattice-based discretization via the probe nodes
- Output is evaluated at arbitrary query points by summing up two prediction layers

Overview

- Our GPWNO makes two parallel predictions, GTO- and PW-based predictions.
 - GTO-based prediction utilizes the coefficient learning of the GTO basis function
 - PW-based prediction utilizes the lattice-based discretization via the probe nodes
- Output is evaluated at arbitrary **query points** by summing up two prediction layers

Motivation

- Why do we uses two types of the basis GTO & PW ?
- Decomposing the density estimation into two regions
 - Regions near the atoms / far from the atoms
- This makes representation to focus the region where they are suitable
 - Short range GTO (Spherical harmonics & radial basis, SO(3) equivariance)
 - Long range PW (Fourier basis, periodicity)

Motivation

- Why do we uses two types of the basis GTO & PW ?
- Decomposing the density estimation into two regions
 - Regions near the atoms / far from the atoms
- This makes representation to focus the region where they are suitable
 - Short range GTO (Spherical harmonics & radial basis, SO(3) equivariance)
 - Long range PW (Fourier basis, periodicity)

GTO-based prediction

Construct prediction from the linear combination of GTO basis

$$ho_{ ext{GTO}}(oldsymbol{x}) = \sum_{u \in ext{ atoms }} \sum_{n=1}^N \sum_{l=0}^L \sum_{m=-l}^l \hat{f}_{u,nlm} \phi_{nlm}(oldsymbol{x},oldsymbol{x}_u) ~~\phi_{nlm}:$$
GTO basis

 Predict the coefficient of spherical harmonics and radial basis by TFN based network and message passing

PW-based prediction

Step 1. Placing probe nodes

• Place probe nodes $p \in P$ that discretize the lattice uniformly

Step 2. Aggregating message to probe nodes

• Aggregate the message from the atoms to probe nodes to initialize the probe features

PW-based prediction

Step 1. Placing probe nodes

• Place probe nodes $p \in P$ that discretize the lattice uniformly

Step 2. Aggregating message to probe nodes

• Aggregate the message from the atoms to probe nodes to initialize the probe features

PW-based prediction

Step 3. Iterative convolution on the PW coefficients space

• Iteratively update the probe features by a convolution operator using the PW basis:

$$f^{(h+1)} = \sigma \Big(\mathcal{W} \cdot f^{(h)} + \mathrm{F}\mathrm{T}^{-1} \cdot \mathcal{R} \cdot \mathrm{F}\mathrm{T} \Big(f^{(h)} \Big) \Big)$$

$$\phi_{oldsymbol{\lambda}}(oldsymbol{r}) = \exp\!\left(j\sum_{d=1}^{3}\lambda_doldsymbol{b}_d\cdotoldsymbol{r}
ight)$$

Step 4. Prediction network

• At the final layer, given a query point x_q , compute the output by message aggregation from probe nodes to query points

PW-based prediction

Step 3. Iterative convolution on the PW coefficients space

• Iteratively update the probe features by a convolution operator using the PW basis:

$$f^{(h+1)} = \sigma \Big(\mathcal{W} \cdot f^{(h)} + \mathrm{FT}^{-1} \cdot \mathcal{R} \cdot \mathrm{FT} \Big(f^{(h)} \Big) \Big) \, .$$

$$\phi_{oldsymbol{\lambda}}(oldsymbol{r}) = \exp\!\left(j\sum_{d=1}^{3}\lambda_doldsymbol{b}_d\cdotoldsymbol{r}
ight)$$

PW basis

Step 4. Prediction network

• At the final layer, given a query point x_q , compute the output by message aggregation from probe nodes to query points

Aperiodic materials

Table 1: Evaluation of GPWNO for aperiodic materials. We report the performance for QM9 and MD dataset in NMAE (%). The best number is highlighted in **bold**. The baseline results are from Cheng & Peng (2023). Each number is averaged over three runs. For brevity, we denote DimeNet and DeepDFT by DmNet and DDFT, respectively.

Dataset	LNO	FNO	GNO	DmNet++	DmNet	EGNN	DDFT2	DDFT	CNN	InfGCN	GPWNO	•
QM9	26.14	28.83	40.86	11.69	11.97	11.92	1.03	2.95	2.01	0.93	0.73	About 30%
Ethanol	43.17	31.98	82.35	14.24	13.99	13.90	8.83	7.34	13.97	8.43	4.00	•
Benzene	38.82	20.05	82.46	14.34	14.48	13.49	5.49	6.61	11.98	5.11	2.45	
Phenol	60.70	42.98	66.69	12.99	12.93	13.59	7.00	9.09	11.52	5.51	2.68	About 50% 📕
Resorcinol	35.07	26.06	58.75	12.01	12.04	12.61	6.95	8.18	11.07	5.95	2.73	•
Ethane	77.14	26.31	71.12	12.95	13.11	15.17	6.36	8.31	14.72	7.01	3.67	
MDA	47.22	34.58	84.52	16.79	18.71	12.37	10.68	9.31	18.52	10.34	5.32	

• Our **GPWNO** outperformed 10 baselines in the aperiodic materials

Results

Aperiodic materials

Figure 4: Comparison between the baselines on QM9 (lower left is better).

• Also, GPWNO excels with the smallest number of parameters.

Results

Periodic materials (Crystalline materials)

Table 2: Evaluation of GPWNO for periodic materials. NMAE (%) in the MP dataset, categorized by the seven crystal family and their combinations. The best number is highlighted in **bold**. Each number is averaged over three runs.

Model	Mixed	Triclinic	Monoclinic	Orthorhombic	Tetragonal	Trigonal	Hexagonal	Cubic
DeepDFT	11.50	32.33	50.54	22.30	37.68	23.89	18.61	27.30
DeepDFT2	15.11	30.20	49.74	20.50	41.21	22.13	12.87	27.63
InfGCN	5.35	4.36	4.63	5.06	5.02	5.21	4.96	4.93
GPWNO	4.84	3.92	4.44	4.73	4.52	4.92	4.55	4.32

- Our **GPWNO** outperforms the baselines regardless of the lattice type.
 - We categorized the dataset by the lattice structure

Thank you!

Open to talk! Come say hi in Vienna 👋

Interested in AI for science and geometrical deep learning!

Poster

Hall C 4-9 #2606 Wednesday 24th July 1:30 PM — 3 PM PDF Code

