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Summary

* Proposed the machine learning model for estimating electron density

* Used Gaussian-type orbital (GTO) and Plane Wave (PW) basis function

* Our framework is a since it is the mapping btw. functions

* Our framework satisfy SE(3)-equivariance and periodic boundary conditions

* We empirically verify the effectiveness of mixing bases
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Electron density estimation

* Electron density is the probability of finding electrons in a specific area

* According to quantum mechanics, the exact location of an electron cannot be
predicted, due to uncertainty principle

 We can only find the probability of electron existence at given point

Electron density plot of water (H,0)
The surface implies the isosurface where probability is identical

[1] Griffiths, David J., and Darrell F. Schroeter. Introduction to quantum mechanics. Cambridge university press, 2018.
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Application of electron density

* Electron density can be used to predict the material’s atomic properties
(energy, reactivity, ...)

* From density functional theory (DFT), the properties of molecular system
can be determined by the functionals depends on the electron density

1] Becke, Axel D. "Density-functional exchange-energy approximation with correct asymptotic behavior." Physical review A 38.6 (1988): 3098.
2] Wy, Xi, et al. "Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials.” Progress in Natural Science: Materials International 29.3 (2019): 247-255.
3] Rozhenko, Alexander B. "Density functional theory calculations of enzyme—inhibitor interactions in medicinal chemistry and drug design." Application of computational techniques in pharmacy and medicine (2014): 207-240.
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[4] Chang, Junli, et al. "Lead-free perovskite compounds CsSn 1- x Ge x | 3- 'y Bry explored for superior visible-light absorption." Physical Chemistry Chemical Physics 23.26 (2021): 14449-14456.
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Application of electron density

* Electron density can be used to predict the material’s atomic properties
(energy, reactivity, ...)

* From density functional theory (DFT), the properties of molecular system
can be determined by the functionals depends on the electron density

Battery cathodes design Drug design Solar cell materials design

1] Becke, Axel D. "Density-functional exchange-energy approximation with correct asymptotic behavior." Physical review A 38.6 (1988): 3098.
2] Wy, Xi, et al. "Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials.” Progress in Natural Science: Materials International 29.3 (2019): 247-255.
3] Rozhenko, Alexander B. "Density functional theory calculations of enzyme—inhibitor interactions in medicinal chemistry and drug design." Application of computational techniques in pharmacy and medicine (2014): 207-240.
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[4] Chang, Junli, et al. "Lead-free perovskite compounds CsSn 1- x Ge x | 3- 'y Bry explored for superior visible-light absorption." Physical Chemistry Chemical Physics 23.26 (2021): 14449-14456.
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Electron density estimation

* We learn the mapping between molecules to the electron density function

fo(d HC)

Molecular graph Electron density function

Position of atoms X = [z1,---, ;] Probability (scalar) at query point p(z,) € R
Atomic features A = [ay,---,a,]
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Electron density estimation

* We learn the mapping between molecules to the electron density function

fo(d HC)

Molecular graph Electron density function
(Sparse scalar field) (Continuous scalar field)
Position of atoms X = [z1,---, ;] Probability (scalar) at query point p(z,) € R
Atomic features A = [ay,---,a,]

(Sparse) function to (continuous) function mapping
“Neural Operator”
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Overview
* Our GPWNO makes two parallel predictions, GTO- and PW-based predictions.

* GTO-based prediction utilizes the coefficient learning of the GTO basis function

* PW-based prediction utilizes the lattice-based discretization via the probe nodes

atom features GTO

probe features
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Overview
* Our GPWNO makes two parallel predictions, GTO- and PW-based predictions.

* GTO-based prediction utilizes the coefficient learning of the GTO basis function

* PW-based prediction utilizes the lattice-based discretization via the probe nodes

* Output is evaluated at arbitrary query points by summing up two prediction layers

atom features GTO

probe features
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Motivation

* Why do we uses two types of the basis - GTO & PW ?
* Decomposing the density estimation into two regions

* Regions near the atoms / far from the atoms

/@ ° /¢

PW GTO PW GTO PW
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Motivation

* Why do we uses two types of the basis - GTO & PW ?
* Decomposing the density estimation into two regions

* Regions near the atoms / far from the atoms
* This makes representation to focus the region where they are suitable

* Short range — GTO (Spherical harmonics & radial basis, SO(3) equivariance)

* Long range — PW (Fourier basis, periodicity)

/o *

PW GTO PW GTO PW
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GTO-based prediction

e Construct prediction from the linear combination of GTO basis

N L 1

paTo(®) = Z 5: _ 5: fu,ananlm(fB, x,) Gnim : GTO basis
——1

u€ atoms n=1 [=0 m

* Predict the coefficient of spherical harmonics and radial basis
by TFN based network and message passing
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PW-based prediction

Step 1. Placing probe nodes

* Place probe nodes p € P that discretize the lattice uniformly
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PW-based prediction

Step 1. Placing probe nodes

* Place probe nodes p € P that discretize the lattice uniformly

Step 2. Aggregating message to probe nodes

» Aggregate the message from the atoms to probe nodes to initialize the probe features
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PW-based prediction

Step 3. Iterative convolution on the PW coefficients space

* |teratively update the probe features by a convolution operator using the PW basis:

FOD) = a(W f® 4+ FT . R.FT (f(h))) #a(r) = exp (jfjxdbd-r)

PW basis
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PW-based prediction

Step 3. Iterative convolution on the PW coefficients space

* |teratively update the probe features by a convolution operator using the PW basis:

FOD) = a(W f® 4+ FT . R.FT (f(h))) #a(r) = exp (jfjxdbd-r)

PW basis

Step 4. Prediction network

* At the final layer, given a query point x,, compute the output by
message aggregation from probe nodes to query points

Step 1 Step 2 Step 3 Step 4




Results

Aperiodic materials

Table 1: Evaluation of GPWNO for aperiodic materials. We report the performance for QM9 and MD dataset in NMAE
(%). The best number is highlighted in bold. The baseline results are from Cheng & Peng (2023). Each number is averaged
over three runs. For brevity, we denote DimeNet and DeepDFT by DmNet and DDFT, respectively.

[ICML '24] Gaussian Plane-wave Neural Operator for Electron Density Estimation

Dataset LNO FNO GNO DmNet++ DmNet EGNN DDFT2 DDFT CNN InfGCN GPWNO
QM9 26.14 28.83 40.86 11.69 11.97 11.92 1.03 2.95 2.01 0.93 0.73
Ethanol 43.17 3198 82.35 14.24 13.99 13.90 8.83 7.34 1397 8.43 4.00
Benzene 38.82  20.05 82.46 14.34 14.48 13.49 5.49 6.61 11.98 5.11 245
Phenol 60.70 4298 66.69 12.99 12.93 13.59 7.00 9.09 1152 5.51 2.68
Resorcinol  35.07 26.06 58.75 12.01 12.04 12.61 6.95 8.18  11.07 5.95 2.73
Ethane 77.14 2631 71.12 12.95 13.11 15.17 6.36 8.31 14.72 7.01 3.67
MDA 4722 3458 84.52 16.79 18.71 12.37 10.68 9.31 18.52 10.34 5.32

* Our GPWNO outperformed 10 baselines in the aperiodic materials

About 30% §

About 50% §
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Aperiodic materials
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Figure 4: Comparison between the baselines on QM9
(lower left is better).

* Also, GPWNO excels with the smallest number of parameters.
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Periodic materials (Crystalline materials)

Table 2: Evaluation of GPWNO for periodic materials. NMAE (%) in the MP dataset, categorized by the seven crystal
family and their combinations. The best number is highlighted in bold. Each number is averaged over three runs.

Model Mixed Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic
DeepDFT 11.50 32.33 50.54 22.30 37.68 23.89 18.61 27.30
DeepDFT2  15.11 30.20 49.74 20.50 41.21 22.13 12.87 27.63
InfGCN 5.35 4.36 4.63 5.06 5.02 5.21 4.96 4.93
GPWNO 4.84 3.92 4.44 4.73 4.52 4.92 4.55 4.32

* Our GPWNO outperforms the baselines regardless of the lattice type.

* We categorized the dataset by the lattice structure
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