

Definitions

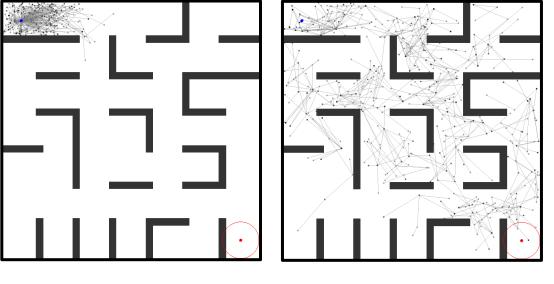
- *S* State space
- U(S) Uniform distribution on state space
- π Policy
- $\hat{\pi}$ Empirical policy
- $d^{\pi}(n)$ State occupancy measure/Probability of expanding node
- $\rho(d^{\pi})$ Density estimate of tree in space
- E[R] Expected Reward
- $D_f(\pi||\pi_\theta)$ f-divergence between π and neural net policy π_{θ}
- $\mathcal{V}(n)$ Expected reward of path through *n*

Connection to RRT and Count-based exploration

- AlphaZero equivalent to optimizing $E_{\widehat{\pi}}[R] - \lambda KL(\widehat{\pi} || \pi_{\theta})$
- We regularize $\rho(d^{\pi})$, density of tree in state space
- RRT = $argmin_{d^{\pi}} KL (\rho(d^{\pi})||U(S))$
- Count-based exploration ≈ $argmax_{\widehat{d^{\pi}}} E_{\widehat{d^{\pi}}}[R] - \lambda D_f(\rho(\widehat{d^{\pi}})||U(S))$
- Propose Volume-MCTS, optimizing $E_{d^{\pi}}[R] - KL(\rho(d^{\pi})||Uniform(S))$
- Solve analytically,
- $d^{\pi^*}(n) = \frac{\lambda Vol(n)}{n}$
 - Vol(n) Volume of n's Voronoi region

- Regularizing state-occupancy measure instead of policy makes MCTS exponentially faster at exploration
 - $O(\exp(N)) \rightarrow O(N^2)$
- Beat MCTS on range of hard exploration tasks
- RRT and count-based exploration equivalent to MCTS with state-occupancy regularization

Experiments

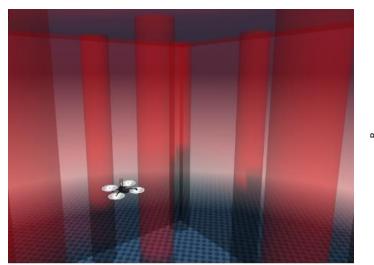


space, while AlphaZero stays

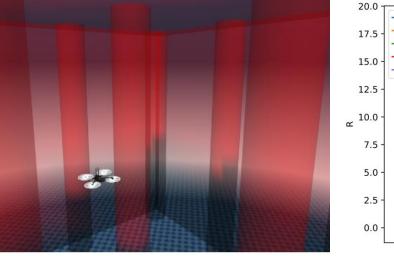
close to starting location

AlphaZero

Volume-MCTS Volume-MCTS covers entire



Quadcopter environment



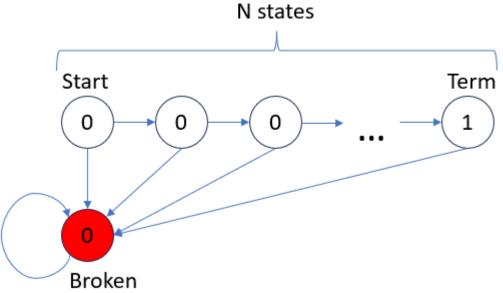
 Volume-MCTS (purple) outperforms both AlphaZero and sampling-based motion planners on quadcopter environment

Quadcopter Results

Theoretical guarantees

Thm 1: If a region with radius δ is reachable in N steps by a path with tolerance of σ , then with probability > 0.5 it will be reached in less than $c^2(1-\gamma)^2\left(\frac{1}{2}N\left|\mathcal{B}_{\frac{\delta}{2}}\right|\sigma d^A+1\right)^2$ steps

"Tightrope" problem. MCTS takes $O(2^N)$ to reach last state



MCTS explores both actions equally. Each state visited ½ as often as previous $O(2^N)$ time needed to reach last state.

Additional details

Open to work