Mobile Attention: Mobile-Friendly Linear-Attention for Vision Transformers **12** ICML | 2024

Tsinghua University

Zhiyu Yao, Jian Wang, Haixu Wu, Jingdong Wang, Mingsheng Long#

Standard attention is not Mobile-Friendly

Standard Attention $O(N^2D)$

Linear Attention O(NDd)

Previous work: Standard attention in Transformers has a **quadratic complexity** with respect to the number of tokens

Linear-attention is emerging as a promising alternative with linear complexity

Key Insight: Reducing head dimensions will result in lower latency and improved efficiency, but leading too many heads

Challenges: a small per-head dimension may cause some heads to struggle in learning valuable subspaces

Mobile-Attention with a Head-Competitive Mechanism

Incoming and Outgoing Flow \geq $\mathbf{I}^{h} = \Phi\left(\mathbf{Q}^{h}\right) \sum_{j=1}^{m} \Phi\left(\mathbf{K}^{j}\right)^{\mathsf{T}}, \quad (1) \quad "\mathsf{I}" \text{ Represent the capacity of }$ incoming flow

outgoing flow

Head-Competitive Mechanism

 $\bar{\mathbf{I}}^{h} = \Phi(\mathbf{Q}^{h}) \sum_{h'=1}^{M} \frac{\Phi(\mathbf{K}^{h'})^{\mathsf{T}}}{\mathbf{O}^{h'}}, \quad (1) \text{ Contrasting the capacity of incoming}$

 $\overline{\mathbf{V}} = \operatorname{Softmax}(\overline{\mathbf{O}}) \odot \mathbf{V},$

 $\overline{\mathbf{O}} = \Phi(\mathbf{K}^{h}) \sum_{i=1}^{M} \frac{\Phi(\mathbf{Q}^{h'})^{\mathsf{T}}}{\mathbf{I}^{h'}}, \quad \textcircled{2} \text{ Making the outgoing flow of value} to kens compete with each other}$ under this fixed sum situation

$$\mathbf{U}_{t}^{h} = \sigma\left(\overline{\mathbf{I}}_{t}^{h}\right) \frac{\Phi\left(\mathbf{Q}_{t}^{h}\right) \sum_{i=1}^{N} \Phi\left(\mathbf{K}_{i}^{h}\right)^{\mathsf{T}}\left(\overline{\mathbf{V}}_{i}^{h}\right)}{\Phi\left(\mathbf{Q}_{t}^{h}\right) \sum_{j=1}^{N} \Phi\left(\mathbf{K}_{j}^{h}\right)^{\mathsf{T}}} \mathbf{\mathbf{E}}_{t}^{N}$$

Attention Visualization

Input Frame (Birdhouse)

Hydra-Attentior

ImageNet-1K Classification

Model	Params(M)	GMACs	CoreML(ms)	A100 (ms)	Pixel 6 (ms)	Top-1 Acc(%)
MobileNetV2 (Sandler et al., 2018)	3.5	0.30	0.9	5.0	25.3	71.8
MobileViT-XS (Mehta & Rastegari, 2021)	2.3	0.70	7.3	11.7	64.4	74.8
EdgeViT-XXS (Chen et al., 2022)	4.1	0.60	2.4	11.3	30.9	74.4
EfficientNet-B0 (Tan & Le, 2019)	5.3	0.40	1.4	10.0	29.4	77.1
ConvNeXt-T (Liu et al., 2022a)	29.0	4.50	83.7	28.8	340.5	82.1
Swin-T (Liu et al., 2021)	29.0	4.50	97.3	22.0	-	81.3
DeiT-T (Touvron et al., 2021)	5.7	1.25	4.5	7.1	66.6	72.2
DeiT-T-MobiAtt	5.7	1.22	3.8	5.9	53.9	73.3
DeiT-S (Touvron et al., 2021)	22.0	4.60	9.0	15.5	218.2	79.8
DeiT-S-MobiAtt	22.0	4.20	7.2	13.3	175.7	80.0
DeiT-B (Touvron et al., 2021)	86.3	17.56	18.2	-	-	83.4
DeiT-B-MobiAtt	86.3	17.03	13.3	-	-	84.2
PVT-v2-b0 (Wang et al., 2022)	3.7	0.60	78.4	17.6	-	70.5
PVT-v2-b0-MobiAtt	3.5	0.56	57.3	15.0	-	71.5
PVT-v2-b2 (Wang et al., 2022)	25.4	4.00	101.0	36.2	- 1	82.1
PVT-v2-b2-MobiAtt	21.1	3.80	65.6	33.7	-	82.6
PVT-v2-b3 (Wang et al., 2022)	45.2	-	114.5	230.9	- 1	83.3
PVT-v2-b3-MobiAtt	39.0	-	89.1	210.1	-	84.0
EfficientFormerV2-S0 (Li et al., 2022a)	3.5	0.40	0.9	6.6	20.8	75.7
EfficientformerV2-S0-MobiAtt	3.5	0.37	0.7	5.5	16.2	76.0
EfficientFormerV2-S2 (Li et al., 2022a)	12.6	1.25	1.6	14.5	57.2	81.6
EfficientformerV2-S2-MobiAtt	12.6	1.22	1.2	13.1	48.9	82.1
EfficientFormerV2-L (Li et al., 2022a)	26.1	2.56	2.7	22.5	117.7	83.3
EfficientformerV2-L-MobiAtt	26.1	2.50	2.2	20.3	97.4	83.7

Compared with Other Linear Attention

Model	Complexity	GMACs	CoreML(ms)	Top-1 Acc (%)
Hydra-DeiT-S (Bolya et al., 2022)	$\mathcal{O}(ND)$	4.10	7.0	73.5
Castling-DeiT-S (You et al., 2023)	$\mathcal{O}(ND^2)$	4.52	9.4	79.8
DeiT-S (Touvron et al., 2021)	$\mathcal{O}(N^2D)$	4.60	9.0	79.8
DeiT-S-MobiAtt w/ vanilla design	$O(ND^2)$	-	8.1	79.0
DeiT-S-MobiAtt* w/ SE (Hu et al., 2018)	$\mathcal{O}(ND^2)$	-	7.3	78.3
DeiT-S-MobiAtt* w/ GLU (Shazeer, 2020)	$\mathcal{O}(ND^2)$	-	7.3	77.5
DeiT-S-MobiAtt w/o Head-competing	$\mathcal{O}(ND)$	4.18	7.2	76.4
DeiT-S-MobiAtt	$\mathcal{O}(ND)$	4.20	7.2	80.0