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Optimal Paths in Generative Tasks
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Related Work

@ Traditional optimal path problem

@ Loose the sparsity of optimal paths with differentiable dynamic
programming (DP) (Verdu & Poor, 1987; Kim et al., 2017; Cuturi &
Blondel, 2017).

@ Involve a convex optimization problem (Amos & Kolter, 2017;
Djolonga & Krause, 2017).

© Maintain the sparsity but smoothed with a convex regularizer (Mensch
& Blondel, 2018)

@ Downstream generative tasks with unobserved structural dependency

@ Multiple training strategies, strongly relies on external components
(Ren et al.,2020; Liu et al., 2022).

@ Have a strong assumption about the model structure (Rabiner, 1989;
Petrov & Klein, 2007).

© Cannot ensure train and test consistency (Kim et al., 2020) or soft
approximation (Shen et al.,2018; Lu et al., 2021).
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Our Motivation: Stochastic Optimal Paths
Definition
For every possible path y € ), denote by
D(R, W, a) (1)
Gibbs distribution over a path y € J(1, N) with probability mass function

explo
DyRW.a) — @@ ¥lw) 3
JeV(1,N) exp(a [|yllw)

@ A unified method to obtain structured sparse optimal paths.

@ Provide tractable closing forms for all ingredients of variational
Bayesian inference to capture stochastic optimal paths.

© Allow gradient optimization for probabilistic generative models.
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Definition of a Directed Acyclic Graph

@ Denote R = (V,€) be a directed acyclic graph (DAG) with nodes V
and edges £.

@ The nodes are numbered in topological order, s.t., V = (1,2,..., N)
and u < v for all (u,v) € &.

@ Assume 1 is the only node without parents and N is the only node
without children.

@ Denote the edge weights matrix W € RV*N with w;j = —oo for all
(u,v) ¢ E.

o Let Y(1,v) be the set of all paths from nodes (1,..,v).

@ Each path y = (y1,..., yjy|) has a score by summing edge weights

along the path, defined as [ly|lw = >_(, )y Wu,v-
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Gumbel Random Variable

Let G(u) denote the unit scale Gumbel random variable with location
parameter 1 and probability density function.

G(x|p) = exp(—(x — p) — exp(x — p)). (3)
e Shifting: Let X ~ G(u).
X + const. ~ G(p + const.). (4)

e Max: Let X; ~ G(u;) forall i € {1,2,..., m}.

max({X1, Xa, ... IogZexp 1))- (5)
o Argmax:

exp(fik)
plk =argmax Xj) = =——— 6
( ie{1.2,...,m} ) >oimq exp(pi) (6)
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Gumbel Propagation

Gumbel propagation offers an equivalent formulation of the definition that
lends itself to dynamic programming by Gumbel max and shift properties.

Lemma
Let
Y = argmax {Qy}, (7)
yEY(1,N)
where for all'y € Y(1, N),
Qy =alyllw + Gy (8)
Gy ~ G(0). (9)

Then the probability of Y =y is given by (2).
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Gumbel Propagation (Cont.)

Let the definitions of 2y and G, extend to all y € UN_, V(1, u), which is

the set of all partial paths. We define for each node v € V the real-valued
random variable

L = Q). 10
Q ye@?ffv){ y) (10)

Lemma
The Q, are Gumbel distributed with

Qv ~ G(uv), (11)
where
wo=log S explallylw). (12)
yeY(1,v)
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Gumbel Propagation (Cont.)

We now state our main result:

Lemma
The location parameters p,, satisfy the recursion
p1 =0

iy, = log Z exp(py +awyy). (14)
ueP(v)

for all v e {2,3,...,N}.
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Gumbel Propagation (Cont.)

Lemma

Let pathsy = (y1,2,.-.,Y}y|) denote the component of the random
variable Y defined in (7), given that Y = (y1,y2,...,¥|y|)- The probability
of the transition v — u is

Tuyv = p()/ifl = U|_y,' =Vv,uc 7D(V)) (15)
exp(py + awy,,y)

_ : 16

exp(fiv) (16)

forall i € {2,3,...,N}.

10/18



Bayesian Dynamic Programming

@ Sampling
Corollary
Paths y ~ D(R,W, «) may be sampled (in reverse) by
Q /nitializing v = N,
@ sampling u € P(v) with probability m, ,
© setting v + u,

© if v =1 then stop, otherwise return to step 2.

o Likelihood
e KL Divergence within the distribution family of D(R, -, «).
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Bayesian Dynamic Programming (Cont.)

@ Sampling
o Likelihood
Corollary
The path probability may be written

DyR,W,a) =[] muv- (17)
(u,v)ey

e KL Divergence within the distribution family of D(R, -, «).
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Bayesian Dynamic Programming (Cont.)

@ Sampling
o Likelihood
e KL Divergence within the distribution family of D(R, -, «).

Lemma
The KL divergence within the family D(R, -, «) is

DKL [D(R7 W: Oé) ||D(R7 W(r)v O‘)}
= u(,\;) — un + Z Wy (Wa,y — Wl(lra), (18)
(u,v)e€

where w, , is the marginal probability of edge (u,v) on D(R,W, «), u(,\;)
is similar to puy but defined in terms of W(") rather than W.
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BDP-VAE

Find unobserved dependencies between condition and data in a latent

space, thereby, helps a better reconstruction .
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Figure: A pipeline of BDP-VAE, where we wish to find an unobserved hard
structural relationship between x and c in the latent space of VAEs denoted as y.

For soft optimal paths, please refer to our discussion in Appendix.D
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Application on Downstream Tasks

© End-to-end Text-to-Speech (TTS)

» We adapt a non end-to-end TTS model (FastSpeech2) to BDP-VAE

framework, thereby performs an end-to-end TTS model (i.e.,

BDPVAE-TTS).
» BDPVAE-TTS outperforms than the baseline method with an
end-to-end pipeline.
» BDPVAE-TTS ensures train and test consistency on finding the
monotonic alignment path.

Table: Mel Cepstral Distortion (MCD) and Real-Time Factor (RTF) compared
with other TTS models.

Model Training Align.(Train) Align. (Infer) MCD RTF

FastSpeech2 (Baseline) Non end-to-end Discrete Continuous 9.96 + 1.01  3.87 x107*
Tacotron2 End-to-end Continuous Continuous 11.39 + 1.95 6.07 x10~*
VAENAR-TTS End-to-end Continuous Continuous 8.18 +£0.87 1.10 x107*
Glow-TTS End-to-end Discrete Continuous 8.58 £ 0.89 2.87 x10~*
BDPVAE-TTS (ours)  End-to-end Discrete Discrete 849+ 096 3.00 x107*
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Application on Downstream Tasks
@ End-to-end Text-to-Speech (TTS)
@ End-to-end Singing Voice Synthesis
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Figure: Visualization of GT, synthesized singing voice spectrogram, and latent
optimal path from the prior encoder. The GT and generated spectrogram are
almost identical, and the generated spectrogram has a similar temporal structure
to the inferred latent optimal path.
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Verify Behaviour of Latent Optimal Path in BDP-VAE
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Figure: Visualization of GT alignment between phoneme tokens and spectrogram
frames, latent optimal paths from the encoder, optimal paths from random latent
space for two audio clips. BDP-VAE achieves closer alignments with GT,
indicating its effectiveness in finding latent optimal paths.
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