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Optimal Paths in Generative Tasks
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Related Work

Traditional optimal path problem
1 Loose the sparsity of optimal paths with differentiable dynamic

programming (DP) (Verdu & Poor, 1987; Kim et al., 2017; Cuturi &
Blondel, 2017).

2 Involve a convex optimization problem (Amos & Kolter, 2017;
Djolonga & Krause, 2017).

3 Maintain the sparsity but smoothed with a convex regularizer (Mensch
& Blondel, 2018)

Downstream generative tasks with unobserved structural dependency
1 Multiple training strategies, strongly relies on external components

(Ren et al.,2020; Liu et al., 2022).
2 Have a strong assumption about the model structure (Rabiner, 1989;

Petrov & Klein, 2007).
3 Cannot ensure train and test consistency (Kim et al., 2020) or soft

approximation (Shen et al.,2018; Lu et al., 2021).
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Our Motivation: Stochastic Optimal Paths

Definition

For every possible path y ∈ Y, denote by

D(R,W, α) (1)

Gibbs distribution over a path y ∈ Y(1,N) with probability mass function

D(y|R,W, α) =
exp(α ∥y∥W)∑

ŷ∈Y(1,N) exp(α ∥ŷ∥W)
. (2)

1 A unified method to obtain structured sparse optimal paths.

2 Provide tractable closing forms for all ingredients of variational
Bayesian inference to capture stochastic optimal paths.

3 Allow gradient optimization for probabilistic generative models.
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Definition of a Directed Acyclic Graph

Denote R = (V, E) be a directed acyclic graph (DAG) with nodes V
and edges E .
The nodes are numbered in topological order, s.t., V = (1, 2, ...,N)
and u < v for all (u, v) ∈ E .
Assume 1 is the only node without parents and N is the only node
without children.

Denote the edge weights matrix W ∈ RN×N with wi ,j = −∞ for all
(u, v) /∈ E .
Let Y(1, v) be the set of all paths from nodes (1, .., v).

Each path y = (y1, ..., y|y|) has a score by summing edge weights
along the path, defined as ||y||W =

∑
(u,v)∈y wu,v .
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Gumbel Random Variable
Let G(µ) denote the unit scale Gumbel random variable with location
parameter µ and probability density function.

G(x |µ) = exp(−(x − µ)− exp(x − µ)). (3)

Shifting: Let X ∼ G(µ).

X + const. ∼ G(µ+ const.). (4)

Max: Let Xi ∼ G(µi ) for all i ∈ {1, 2, . . . ,m}.

max({X1,X2, . . . ,Xm}) ∼ G(log
m∑
i=1

exp(µi )). (5)

Argmax:

p(k = argmax
i∈{1,2,...,m}

Xi ) =
exp(µk)∑m
i=1 exp(µi )

. (6)
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Gumbel Propagation

Gumbel propagation offers an equivalent formulation of the definition that
lends itself to dynamic programming by Gumbel max and shift properties.

Lemma

Let

Y = argmax
y∈Y(1,N)

{Ωy} , (7)

where for all y ∈ Y(1,N),

Ωy = α ∥y∥W + Gy (8)

Gy ∼ G(0). (9)

Then the probability of Y = y is given by (2).
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Gumbel Propagation (Cont.)

Let the definitions of Ωy and Gy extend to all y ∈
⋃N

u=1 Y(1, u), which is
the set of all partial paths. We define for each node v ∈ V the real-valued
random variable

Qv = max
y∈Y(1,v)

{Ωy} . (10)

Lemma

The Qv are Gumbel distributed with

Qv ∼ G(µv ), (11)

where

µv = log
∑

y∈Y(1,v)

exp(α ∥y∥W). (12)
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Gumbel Propagation (Cont.)

We now state our main result:

Lemma

The location parameters µv satisfy the recursion

µ1 = 0 (13)

µv = log
∑

u∈P(v)

exp(µu + αwu,v ). (14)

for all v ∈ {2, 3, . . . ,N}.
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Gumbel Propagation (Cont.)

Lemma

Let paths y = (y1, y2, . . . , y|y|) denote the component of the random
variable Y defined in (7), given that Y = (y1, y2, . . . , y|y|). The probability
of the transition v → u is

πu,v ≡ p(yi−1 = u|yi = v , u ∈ P(v)) (15)

=
exp(µu + αwu,v )

exp(µv )
, (16)

for all i ∈ {2, 3, . . . ,N}.
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Bayesian Dynamic Programming

Sampling

Corollary

Paths y ∼ D(R,W, α) may be sampled (in reverse) by

1 Initializing v = N,

2 sampling u ∈ P(v) with probability πu,v ,

3 setting v ← u,

4 if v = 1 then stop, otherwise return to step 2.

Likelihood

KL Divergence within the distribution family of D(R, ·, α).
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Bayesian Dynamic Programming (Cont.)

Sampling

Likelihood

Corollary

The path probability may be written

D(y|R,W, α) =
∏

(u,v)∈y

πu,v . (17)

KL Divergence within the distribution family of D(R, ·, α).
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Bayesian Dynamic Programming (Cont.)

Sampling

Likelihood

KL Divergence within the distribution family of D(R, ·, α).

Lemma

The KL divergence within the family D(R, ·, α) is

DKL

[
D(R,W, α)

∥∥D(R,W(r), α)
]

= µ
(r)
N − µN + α

∑
(u,v)∈E

ωu,v

(
wu,v − w

(r)
u,v

)
, (18)

where ωu,v is the marginal probability of edge (u, v) on D(R,W, α), µ
(r)
N

is similar to µN but defined in terms of W(r) rather than W.
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BDP-VAE

Find unobserved dependencies between condition and data in a latent
space, thereby, helps a better reconstruction 1.

Figure: A pipeline of BDP-VAE, where we wish to find an unobserved hard
structural relationship between x and c in the latent space of VAEs denoted as y.

1For soft optimal paths, please refer to our discussion in Appendix.D
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Application on Downstream Tasks

1 End-to-end Text-to-Speech (TTS)
▶ We adapt a non end-to-end TTS model (FastSpeech2) to BDP-VAE

framework, thereby performs an end-to-end TTS model (i.e.,
BDPVAE-TTS).

▶ BDPVAE-TTS outperforms than the baseline method with an
end-to-end pipeline.

▶ BDPVAE-TTS ensures train and test consistency on finding the
monotonic alignment path.

Table: Mel Cepstral Distortion (MCD) and Real-Time Factor (RTF) compared
with other TTS models.

Model Training Align.(Train) Align. (Infer) MCD RTF

FastSpeech2 (Baseline) Non end-to-end Discrete Continuous 9.96 ± 1.01 3.87 ×10−4

Tacotron2 End-to-end Continuous Continuous 11.39 ± 1.95 6.07 ×10−4

VAENAR-TTS End-to-end Continuous Continuous 8.18 ± 0.87 1.10 ×10−4

Glow-TTS End-to-end Discrete Continuous 8.58 ± 0.89 2.87 ×10−4

BDPVAE-TTS (ours) End-to-end Discrete Discrete 8.49 ± 0.96 3.00 ×10−4
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Application on Downstream Tasks
1 End-to-end Text-to-Speech (TTS)
2 End-to-end Singing Voice Synthesis

Figure: Visualization of GT, synthesized singing voice spectrogram, and latent
optimal path from the prior encoder. The GT and generated spectrogram are
almost identical, and the generated spectrogram has a similar temporal structure
to the inferred latent optimal path.
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Verify Behaviour of Latent Optimal Path in BDP-VAE

Figure: Visualization of GT alignment between phoneme tokens and spectrogram
frames, latent optimal paths from the encoder, optimal paths from random latent
space for two audio clips. BDP-VAE achieves closer alignments with GT,
indicating its effectiveness in finding latent optimal paths.
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