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Observational dataset
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A simple causal graph

Can we estimate the causal effect of 𝑋& on 𝑌 in the presence of 
an unmeasured confounder 𝑈?

• 𝐗 = {𝑋!, … , 𝑋"} denotes a vector of treatments;
• 𝑌 denotes an outcome;
• 𝐔 = {𝑈!, … , 𝑈"} denotes a vector of unmeasured confounders.



Proximal Causal Learning 

One can estimate the causal effect of 𝑋& on 𝑌 using Z (NCE) and W (MCO)!

Def. 1 [NCE and NCO (Miao et al., 2018a; Shi et al., 2020b)] Given a target causal 
effect of 𝑋# on 𝑌 in the case where 𝐔 are the set of unmeasured confounding between 
𝑋# and 𝑌, sets 𝐙 and 𝐖 are the valid NCE and NCO respectively if the following 
conditions hold:
• 𝐙 is independent of 𝑌 conditional on (𝐔, 𝑋#), and
• 𝐖 is independent of (𝑋#, 𝐙) conditional on 𝐔.
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A simple causal graph

Is it possible to find valid proxy variables (NCE and NCO) of 
unmeasured confounders U relative to a causal relation 𝑋&→ 𝑌 only 

from measured variables 𝐗?

• 𝐗 = {𝑋!, … , 𝑋"} denotes a vector of treatments;
• 𝑌 denotes an outcome;
• 𝐔 = {𝑈!, … , 𝑈"} denotes a vector of unmeasured confounders.



Linear, Acyclic Causal Model 

• Assume variables were generated by the Linear, Acyclic Causal Model. We
assume that U affects both treatments X and outcome Y.

Find the sufficient testable conditions that render the proxy variables 
relative to a causal relation 𝑋&→ 𝑌 identifiable?



Proxy Variables Estimator
Prop. 1 [Proxy Variables Estimator (Kuroki & Pearl, 2014)] Assume the system is a 
linear causal model. Further, assume that there exists one unmeasured confounder 𝑈
that affects both treatment 𝑋# and outcome 𝑌, and that Z and W are NCE and NCO of 
confounder 𝑈. the unbiased estimator for the causal effect 𝛽$(→& of 𝑋# on 𝑌 is as 
follows,
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Prop. 2 [Extended Proxy Variables Estimator (Ours)] Assume the system is a linear 
causal model. Further, assume that there exists 𝑞 unmeasured confounders, denoted by 
𝐔, that affect both treatment 𝑋# and outcome 𝑌. Let 𝐙 with |𝐙| = 𝑞 and 𝐖 with |𝐖| =
𝑞 be two valid NCE and NCO of confounders 𝐔 respectively. Thus, the unbiased 
estimator for the causal effect 𝛽$(→& of 𝑋# on 𝑌 is as follows,
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The extended proxy variables estimator allows us to obtain an unbiased 
causal effect, given valid NCE and NCO of confounders. 



Identification of Proxy Variables with 
Second-Order Statistics 

A Motivating Example: Consider the causal relationship 𝑋/→ 𝑌 in the following 
causal diagrams. (a) 𝑋! and 𝑋0 serve as valid NCE and NCO, respectively. (b) 𝑋! and 
𝑋0 serve as invalid NCE and NCO, respectively. 

rk Σ !!,!",!# , !!,#,!$ ≤ 2 Σ !!,!",!# , !!,#,!$ is full rank

(a) (b) 

The above facts show that lack of edge 𝑋&→ 𝑌 , i.e., the variable of NCE 
does not causally affect the primary outcome, has a testable implication.



Identification of Proxy Variables with 
Second-Order Statistics 

Roughly speaking, condition (1) of Rule 1(or 2) ensures that 𝑨 is independent of 𝒀
conditional on (𝑼, 𝑿𝒌), and condition (2) of Rule 1(or 2) ensures that 𝑨 is 
independent of (𝑿𝒌, 𝑩) conditional on 𝑼.

Rule 1. Let 𝐀 and 𝐁 be two disjoint subsets of 𝐗, where |𝐀| = 𝑞 and |𝐁| = 𝑞. 
Furthermore, let 𝑄 be a variable in {𝐗\{𝐀 ∪ 𝐁 ∪ 𝑋#}}. 
If 1) rk Σ $2, 3, 𝐀 , $(, &, 𝐁 ≤ 𝑞 + 1, and 2) rk Σ $2, 𝐀 , 3, 𝐁 ≤ q , then 𝐀 and 𝐁 are 
valid NCE and NCO relative to 𝑋#→ 𝑌 respectively.

Rule 2. Let 𝐀 and 𝐁 be two disjoint subsets of 𝐗, where 𝐀 = 𝑞 + 1 and 𝐁 = 𝑞 + 1. 
If 1) rk Σ $2, 𝐀 , $(, &, 𝐁 ≤ 𝑞 + 1, and 2) rk Σ $2, 𝐀 , 𝐁 ≤ q , then 𝐀 and 𝐁 are valid 
NCE and NCO relative to 𝑋#→ 𝑌 respectively.



Identification of Proxy Variables with 
Second-Order Statistics 

A Counter-example: However, the above three causal graphs entails all possible rank 
constraints in the marginal covariance matrix of {𝑋#, 𝑌, 𝑍,𝑊}.

The above facts indicate that the conditions involving second-order statistics 
(marginal covariance matrix) are not necessary.

😞



Identification of Proxy Variables with 
Higher-Order Statistics 

A Motivating Example: consider the causal relationship 𝑋#→ 𝑌 in the above causal 
diagram, where 𝑍 and 𝑊 serve as valid NCE and NCO for the 𝑋#→ 𝑌 in the subgraph 
(a). We analyze the observed variables and note the following result:

The facts show that lack of edges 𝒁→ 𝑌(i.e., the variable of NCE does not affect the 
outcome), or 𝑾→𝑋# (i.e., the variable of NCO does not affect the treatment), has a 

testable implication.

Def. [GIN condition] Suppose all variables follow the linear non-Gaussian acyclic causal 
model. Let 𝐘, 𝐙 be two sets of random variables. We say that 𝐙, 𝐘 follows the GIN 
condition if and only if 𝝎6𝐘 ⊥ 𝐙, where 𝝎 satisfies 𝝎6𝔼 𝒀𝒁6 = 𝟎 and 𝝎 ≠ 𝟎.

(a). ( 𝑋7, 𝑍 , 𝑋#, 𝑌, 𝑊 ) follows the GIN, and ( 𝑊 , 𝑋#, Z ) follows the GIN.
(b). ( 𝑋7, 𝑍 , 𝑋#, 𝑌, 𝑊 ) violates the GIN, and ( 𝑊 , 𝑋#, Z ) follows the GIN. 
(c). ( 𝑋7, 𝑍 , 𝑋#, 𝑌, 𝑊 ) follows the GIN, and ( 𝑊 , 𝑋#, Z ) violates the GIN.



Identification of Proxy Variables with 
Higher-Order Statistics 

Roughly speaking, condition (1) of Rule 3 ensures that 𝑨 is independent of 𝒀
conditional on (𝑼, 𝑿𝒌), and condition (2) of Rule 3 ensures that 𝑨 is independent 
of (𝑿𝒌, 𝑩) conditional on 𝑼.

Rule 3. Let 𝐀 and 𝐁 be two disjoint subsets of 𝐗, where |𝐀| = 𝑞 and |𝐁| = 𝑞. Assume 
that all noise variables follow the non-Gaussian distributions. 
If 1) ( 𝑋7, 𝐀 , 𝑋#, 𝑌, 𝐁 ) follows the GIN constraint, and 2)(𝐁, 𝑋7, 𝐀 ) follows 
the GIN constraint, then 𝐀 and 𝐁 are valid NCE and NCO relative to 𝑋#→ 𝑌
respectively. 



Simulation
We here consider the following two typical settings: 
• Gaussian case: The noise terms are generated from ℕ(0,1); 
• Non-Gaussian case: The noise terms are generated from Exp(𝜆).

Our algorithms outperform other methods (with little bias for all causal effects) 
in all two settings, with all sample sizes.



Application to Real-World Data 
We apply our method to analyze the causal effects of gene expressions on the body 
weight of F2 mice using the mouse obesity dataset as described by Wang et al. (2006). 
The dataset we used comprises 17 gene expressions that are known to potentially 
influence mouse weight, as reported by Lin et al. (2015).

• The gene expressions Gstm2, Sirpa, and 2010002N04Rik exhibit positive and 
significant effects on body weight, whereas the gene expression Dscam
demonstrates a negative impact on body weight.

• Igfbp2 (Insulin-like growth factor binding protein 2) displays negative and 
significant effects on body weight, attributable to its role in mitigating the 
development of obesity, as supported by Wheatcroft et al. (2007).

• Irx3 (Iroquois homebox gene 3) exhibits negative and significant effects on body 
weight, which can be attributed to its association with lifestyle changes and its 
pivotal role in weight regulation through energy balance, as elucidated in 
Schneeberger (2019).



Conclusions and Future work

Conclusions
Ø Introduce an extended proxy variable estimator to handle multiple 

unmeasured confounders between treatments and outcomes;
Ø Provide two specific identifiability conditions for selecting proxy 

variables, based on the second-order and higher-order statistics;
Ø Proposes two efficient algorithms for selecting proxy variables, with their 

effectiveness substantiated by experimental results.

Future work
Ø Investigate the identifiability conditions for selecting proxy variables 

under nonlinear causal models.


