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Hamiltonian Prediction

» E (M)

> eLumo (M)
— ep(M)

é > egomo (M)
~_

M = {Z,R)

« Molecular properties: interaction among electrons and atomic nuclei
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Hamiltonian Prediction
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« Molecular properties: interaction among electrons and atomic nuclei
« DFT: solve electronic structure hence properties
« Hamiltonian: raw DFT solution, derive all properties
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Hamiltonian Prediction

DFT 7 *E(M)

> egomo (M)
— HOD < > eLumo (M)

\ — ep(M)

M ={Z,R}

« Molecular properties: interaction among electrons and atomic nuclei
« DFT: solve electronic structure hence properties
« Hamiltonian: raw DFT solution, derive all properties
« Hamiltonian prediction:
“unified” predictor, provide all properties that DFT can



Hamiltonian Prediction

DFT 7 *E(M)

> egomo (M)
H(M) < > eLumo (M)
\ — ep(M)

Self-consistency

M ={Z,R}
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« Hamiltonian prediction has a self-consistency principle: Training without label!
« Distinction from common property prediction: data-free training / self-improvement

« Compensating data scarcity with scientific laws
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Hamiltonian Prediction

DFT 7 *E(M)

HOAM) s > egomo (M)
i > €r.umo (M)
Self-consistency — €A (M)

M ={Z,R}

« Hamiltonian prediction has a self-consistency principle: Training without label!
Distinction from common property prediction: data-free training / self-improvement
« Compensating data scarcity with scientific laws
« Unique benefits:
« Exact generalization to arbitrary workload beyond labeled data
« Amortization of DFT calculation: more efficient than running DFT to generate labels
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Background: DFT Formulation

- Describe N-electron state by orbitals {¢;(r)}}_, = coefficients C under a basis set
« Solve for the electron state C of molecular structure M by minimizing:
E»(C), s.t. CTS;, C = 1.

« Solve the optimization problem:

____________________________
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Background: DFT Formulation mm VICroso

- Describe N-electron state by orbitals {¢;(r)}}_, = coefficients C under a basis set
« Solve for the electron state C of molecular structure M by minimizing:
E(C), s.t. CTSy, C =11

« Solve the optimization problem:

____________________________

Self-Consistent Field (SCF) iteration:
ck-1 3 H® =H, (c* V) > c® = Cyp(H®) which solves HF'C = S, Ce

= H), after convergence
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DFT Calculation—> Self-Consistency Traintfg ="

Supervised training

Cor(HD) Cor(H®)
Corr (H): /M_\« /\«

solution to HC = Sy, C e c® g®» c® Hg&H .. H)r © Hy(M)
\_/ U U Llabel loss
Hy (C) Hj(C) ,
NGNSl G Ee DFT labeling (SCF iteration)

Hj(C)
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DFT Calculation-> Self-Consistency Traintag =" .

Supervised training

Cor(HD) Cor(H®)
Corr (H): /M—\« /\4

solutionto HC = Sy, C e c® g®» c®» H& .. His © Ho(M)
A A U Liabel 0SS
He (CO) HM(C(l))
S-Sl EELElEn DFT labeling (SCF iteration)
Self-Consistency training _
Car(Ho(M))
L, -
Hy (M)
HM(C) Lself—con 0SS II CM’G

M e
M\ M,0

Ls.(8;D) = |D|Z |H9(M) —Hyy (CM (HG(M)))”

2

F
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« Self-consistency loss

Lec(6; D) = %ZW) | o ) = Hae (o (75 00)) \E

« Not just a regularization: it determines the DFT solution (label).

12
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Self-Consistency Training

« Self-consistency loss

1 N - 2
Lee(@:D) = =) || () = Hag (Cac (A, 00) )|
ID| Lpr~p F
« Not just a regularization: it determines the DFT solution (label).

- Minimizing the gap unnecessarily drives H, (M) towards H;, (CM (ﬁg(M))).

« The latter may even be farther from the solution, in which case both are driven
to the solution.

« Should not apply stop-gradient to the latter.

13
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Self-Consistency Training

« Hamiltonian prediction
« Roto-translational/SE(3) equivariance

« QHNet [Yu’23]: an SE(3)-equivariant GNN balance efficiency and accuracy

[Yu’23] Yu H, Xu Z, Qian X, et al. Efficient and equivariant graph networks for predicting quantum Hamiltonian[C]//International
Conference on Machine Learning. PMLR, 2023. 14
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Self-Consistency Training

« Hamiltonian prediction
« Roto-translational/SE(3) equivariance
« QHNet [Yu’23]: an SE(3)-equivariant GNN balance efficiency and accuracy
1 - . 2
: : : Lsc(6;D) = — Hg(M) — Hae [ Cor (Ho (M
« Hamiltonian reconstruction (6:D) |D|ZM~D [0 M( e (R ))>||F

« Numerically stable implementation of differentiation through eigensolver C;,(H) .

*  GPU implementation of Hamiltonian construction H,,(C)

[Yu’23] Yu H, Xu Z, Qian X, et al. Efficient and equivariant graph networks for predicting quantum Hamiltonian[C]//International

Conference on Machine Learning. PMLR, 2023. 15
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Unique Benefits

- Generalization beyond labeled data: £i,pe1(8; D®) + A Ligir_con(6; DP)
\_Y_’ - J
limited labeled dataset unlimited unlabeled dataset

16
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Unique Benefits

- Generalization beyond labeled data: £i,pe1(8; D®) + A Legir_con(6; DP)
\_Y_’ - J
limited labeled dataset unlimited unlabeled dataset

« Amortization effect: efficiency over DFT labeling

Cost of one iteration: [

DFT calculation:

supervision
Training molecules: M@ M@ pM® M@ ar®G A © M@ ME O pra0pr AL a2)
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Unique Benefits

- Generalization beyond labeled data: £i,pe1(8; D®) + A Legir_con(6; DP)
\_Y_’ - J
limited labeled dataset unlimited unlabeled dataset

« Amortization effect: efficiency over DFT labeling

Cost of one iteration: [

DFT calculation:

supervision
Training molecules: M@ M@ pM® M@ ar®G A © M@ ME O pra0pr AL a2)

supervision
Self-consistency training: 18
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Results: Generalization beyond Labeled Data

- Data-scarce scenario (MD17): [D@W| = 100, |D@| = 24,900

1 N O— . o e . . . .
H O &Y Direct prediction Derived molecular properties As DFT init
: O — ( A \ —A—
H(n) O Llabel \-L\{ngc_u_lcz Setting H [ﬂEh] l € [,uEh] l C [%] T emomo [,uEh] l eLumo [,U,Eh] 1 ea [/LEh] } SCF Accel. [%] 1

- Ett:a‘n;)]\ “abel 160.36 712.54  99.44 911.64 6800.84 6643.11 68.3
- g ¥cabel + self-con > 75.65 28549  99.94 336.97 1203.60 1224.86 61.5
O _.-”" Malondi- label 101.19 456.75  99.09 471.92 1093.22 1115.94 69.1
O e aldehyde label + self-con 86.60 280.39 99.67 274.45 279.14 324.37 62.1
];;elf_ con  Uracil label 88.26 1079.51  95.83 1217.17 12496.1 11850.56 65.8
O / ac label +self-con  63.82 31540  99.58 359.98 369.67 388.30 54.5
OJo®
~

M (@D 19
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Results: Generalization beyond Labeled Data

« Qut-of-distribution (OOD) scenario (QH9)
labeled small molecules + finetune on unlabeled large molecules = test on large molecules

H(l) O b 2)small
H(®
O > _L_label
O pretra\ln\\ Setting H [,U,Eh] i € [,uEh] l, C [%] T EHOMO [,U,Eh] i ELUMO [/_LEh] J, EA [,uEh] l, SCF Accel. [%] i
H(n) O ) A zero-shot 69.67 403.52 95.72 778.86 12230.49 12203.12 66.3
_ __ pself-con (all-param) 65.74 375.31 97.31 565.50 1130.55 1316.96 64.5
PPt self-con (adapter) 64.48 268.83 97.12 449.80 1220.54 1394.29 65.0
O /finetune
O 1 Lself—con
Ol
O J 2)large

M (@D 20
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Results: Training Efficiency by Amortization

Data-scarce scenario (MD17): |[D@| = 100, |D®?)| = 24900

Lself—con ON Label the unlabeled Label the unlabeled
unlabeled then Liapel while Lygper
—— label + self-con extended-label —— extended-label-online
0.10] ‘
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E - - - - - A
S T T T T 0.0047 ]
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= _
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Computation time (s)
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accuracy-cost (computation time) curve

(c) Uracil
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Results: Amortization of DFT

Data-scarce scenario (MD17): |[D@| = 100, |D®?)| = 24900

Leolf—con ON Label the unlabeled Label the unlabeled
unlabeled then Liapel while Lygpel
—— label + self-con extended-label —— extended-label-online
0.101 ' ' ' ' '
& 0.08] 0.081 0.06
2
W 0.06 0.06 0.04.
= g 1 j! L i 1
% - - 1 — — —
S0.0050- 0.0047
= 0.004 -
£
.002 1
‘IU 0.0025 0.002 0.00
0.0000 - - : 0.000 - : - ] 0.000 - : : e
0 100000 200000 300000 0 100000 200000 300000 400000 0 100000 200000 300000 400000
Effective SCF iterations Effective SCF iterations Effective SCF iterations

accuracy-cost (effective SCF iterations) curve
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Results: Amortization of DFT

« OOD scenario (QH9)
labeled small molecules + finetune on unlabeled large molecules = test on large molecules

—— self-con extended-label —— extended-label-online

0.00014 -
Ty 0.00025 -
= 0.00012
L
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accuracy-cost (computation time) curve
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Results: Amortization of DFT

OOD scenario (QH9)
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labeled small molecules + finetune on unlabeled large molecules = test on large molecules

—— self-con extended-label —— extended-label-online
0.00014 -
=
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= 0.000121
L
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Final performance

(o

self—con5|stency tralnlng gives better derived molecular propertles'

FT mode Setting

[uEh]i e[uEh]i C[%] 1 enomo [nEn] | eLumo [HEL] | ea[nEn] | SCF Accel. [70] 1

' extended-label  62.13 365.66  96.89 577.46 5962.16 6137.66 65.0

all-param self-con 65.74 37531  97.31 565.50 1130.55 1316.96 64.5

adangey | CXtended-label 59,67 330.05  96.63 541.92 6372.12 6445.33 65.2 )
p 64.48 268.83  97.12 449.80 1220.54 1394.29 65.0

self-con
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Results: Amortization of DFT

- Direct acceleration over DFT calculation
- Self-consistency training time vs. DFT computation time
to reach the same level of electronic energy accuracy

Molecule criterion [uEw|  tseif-con [S] torr [s]
Ethanol 31.0 4.50x10*  6.40x10*
Malondialdehyde 88.9 4.81x10* 1.05x10°

Uracil 177.2 1.23x10% 2.15x10°

25



Results: Extending Applicable Scale of Ha

)AL AN
g |tt0ﬁ‘ia*n“l3’red ct

= Mi rosoft

Labeled QM9 (< 31atoms)+Finetune on unlabeled larger molecules - test on MD22

(ALA3: 42 atoms, DHA: 56 atoms)
o Vs. zero-shot generalization

H®D O 1 Daomo
H (2) O Table 5. Generalization results on large-scale molecules. All metrics are calculated on MD22 test structures.
O Liabel Molecule Setting H[pEuw] |l e[pEn]l Cl%| 1 enomo [#En]l eLumo [pEn] | ea[pFEn] ]l SCF Accel. [%] |
: > = — —m e __ '
. L T T T T zero-shot 23771  6.54x10° 5224 6.90x10° 9.51x10* 9.79x10* 84.6
g (O | pretrain ALA3 -] selfcon 5249  1.22x10° 9446  2.07x10° 3.76x10°  2.69x10° 64.7
O Pl e2e (ET) N/A N/A N/A 1.74x10° 7.72x10° 2.38x10° N/A
/ JPtial e2e (Equiformer) N/A N/A N/A 2.38x10° 1.16x10* 2.27x10° N/A
,x” zero-shot 397.87  1.84x10"  20.15 1.11x10* 1.90%10° 1.85%10° 170.8
0 DHA self-con 56.12  1.81x10° 83.51 1.99x10° 4.01x10°  2.34x10° 67.0
O / finetune e2e (ET) N/A N/A N/A 2.92x10° 258%10*  3.39x10° N/A
e2e (Equiformer) N/A N/A N/A 3.76x10° 2.31x10* 4.17x10° N/A

O Lself—con

]V[(d) DMD22

26
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Results: Extending Applicable Scale of Ha ‘ﬁlttomah“lared ction

QM09 (< 31atoms) > MD22 (ALA3: 42 atoms, DHA: 56 atoms)

o vs. SOTA end-to-end property predictors

H® O ) Doums
(2) O Table 5. Generalization results on large-scale molecules. All metrics are calculated on MD22 test structures.
O Molecule Setting H[pELW ] e[pEn]l C[%] 1T enomo [En] | evumo [wEn] | ea [pEn] | SCF Accel. [%] |
e zero-shot 23771  6.54x10° 52.24 6.90x 103 9.51x10% 9.79x 10* 84.6
g O Lproperty ALA3 _ o= self-con 5249  1.22x10° 9446 | 2.07x10 3.76x 10 2.69x10 64.7
O ~sel e2e (ET) N/A N/A N/A 1.74x10° 7.72x103 2.38%x10° N/A
J gt e2e (Equiformer) N/A N/A N/A 2.38x10° 1.16x10* 2.27x10° N/A
el zero-shot 397.87  1.84x10*  20.15 1.11x10* 1.90x10° 1.85x10° 170.8
R DHA self-con 56.12 1.81x10% 83.51 1.99x 103 4.01x10° 2.34x10° 67.0
O / finetune e2e (ET) N/A N/A N/A 2.92x10° 258x10%  3.39x10° N/A
/ e2e (Equiformer) N/A N/A N/A 3.76x10° 2.31x10* 4.17x10° N/A
O Lself—con
Dup22

M @D 27
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