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Hamiltonian Prediction 

• Molecular properties: interaction among electrons and atomic nuclei
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Hamiltonian Prediction 

• Molecular properties: interaction among electrons and atomic nuclei
• DFT: solve electronic structure hence properties
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Hamiltonian Prediction 

• Molecular properties: interaction among electrons and atomic nuclei
• DFT: solve electronic structure hence properties
• Hamiltonian: raw DFT solution, derive all properties
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Hamiltonian Prediction 

• Molecular properties: interaction among electrons and atomic nuclei
• DFT: solve electronic structure hence properties
• Hamiltonian: raw DFT solution, derive all properties
• Hamiltonian prediction:

“unified” predictor, provide all properties that DFT can

…
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Hamiltonian Prediction 
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• Hamiltonian prediction has a self-consistency principle: Training without label!
• Distinction from common property prediction: data-free training / self-improvement
• Compensating data scarcity with scientific laws
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Hamiltonian Prediction 

…
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𝐇 ℳ

ℳ ≔ {𝒵,ℛ} Self-consistency

• Hamiltonian prediction has a self-consistency principle: Training without label!
• Distinction from common property prediction: data-free training / self-improvement
• Compensating data scarcity with scientific laws

• Unique benefits:
• Exact generalization to arbitrary workload beyond labeled data 
• Amortization of DFT calculation: more efficient than running DFT to generate labels



• Solve the optimization problem: 
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Background: DFT Formulation

• Describe 𝑁-electron state by orbitals 𝜙& 𝐫 &'(
) è coefficients 𝐂 under a basis set

• Solve for the electron state 𝐂 of molecular structure ℳ by minimizing:
𝐸ℳ 𝐂 , s.t. 𝐂*𝐒ℳ 𝐂 = 𝐈.

Kohn-sham equation
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Background: DFT Formulation

• Describe 𝑁-electron state by orbitals 𝜙& 𝐫 &'(
) è coefficients 𝐂 under a basis set

• Solve for the electron state 𝐂 of molecular structure ℳ by minimizing:
𝐸ℳ 𝐂 , s.t. 𝐂*𝐒ℳ 𝐂 = 𝐈.

Self-Consistent Field (SCF) iteration:
𝐂 +,( è 𝐇 + = 𝐇ℳ 𝐂 +,( è 𝐂 + ≔ 𝐂ℳ 𝐇 + which solves 𝐇 + 𝐂 = 𝐒ℳ𝐂𝛜

è 𝐇ℳ⋆ after convergence

Kohn-sham equation



DFT Calculation➔ Self-Consistency Training 

𝐇ℳ 𝐂 𝐂 = 𝐒ℳ 𝐂 𝛜

Kohn-Sham equation

𝐇ℳ 𝐂

𝐂ℳ 𝐇 :
solution to 𝐇 𝐂 = 𝐒ℳ 𝐂 𝛜
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Supervised training

DFT labeling (SCF iteration)
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Self-Consistency training
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Self-Consistency Training 

• Self-consistency loss
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• Not just a regularization: it determines the DFT solution (label).
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Self-Consistency Training 

• Self-consistency loss
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• Not just a regularization: it determines the DFT solution (label).

• Minimizing the gap unnecessarily drives .𝐇" ℳ towards 𝐇ℳ 𝐂ℳ .𝐇" ℳ .

• The latter may even be farther from the solution, in which case both are driven 

to the solution. 

• Should not apply stop-gradient to the latter.
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• Hamiltonian prediction

• Roto-translational/SE(3) equivariance

• QHNet [Yu’23]: an SE(3)-equivariant GNN balance efficiency and accuracy

Self-Consistency Training 

[Yu’23] Yu H, Xu Z, Qian X, et al. Efficient and equivariant graph networks for predicting quantum Hamiltonian[C]//International 
Conference on Machine Learning. PMLR, 2023.
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• Hamiltonian prediction

• Roto-translational/SE(3) equivariance

• QHNet [Yu’23]: an SE(3)-equivariant GNN balance efficiency and accuracy

• Hamiltonian reconstruction

• Numerically stable implementation of differentiation through eigensolver 𝐂ℳ(𝐇) .

• GPU implementation of Hamiltonian construction 𝐇ℳ(𝐂)

𝐿36 𝜃;𝒟 =
1
𝒟 1
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'𝐇+ ℳ −𝐇ℳ 𝐂ℳ '𝐇+ ℳ

;
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Self-Consistency Training 

[Yu’23] Yu H, Xu Z, Qian X, et al. Efficient and equivariant graph networks for predicting quantum Hamiltonian[C]//International 
Conference on Machine Learning. PMLR, 2023.
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• Generalization beyond labeled data: ℒ56785 𝜃;𝒟 ( + 𝜆 ℒ.859,/:; 𝜃;𝒟 4

Unique Benefits 

limited labeled dataset unlimited unlabeled dataset 
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Unique Benefits 

• Amortization effect: efficiency over DFT labeling

limited labeled dataset unlimited unlabeled dataset 
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DFT calculation:

Cost of one iteration:
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supervision
Training molecules:



18

Unique Benefits 

• Amortization effect: efficiency over DFT labeling

limited labeled dataset unlimited unlabeled dataset 

ℳ - ℳ < ℳ --

Self-consistency training:

DFT calculation:

Cost of one iteration:

ℳ -,ℳ = ℳ > ℳ ? ℳ @ ℳ A ℳ B ℳ C ℳ -<

supervision

supervision
Training molecules:

• Generalization beyond labeled data: ℒ56785 𝜃;𝒟 ( + 𝜆 ℒ.859,/:; 𝜃;𝒟 4
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• Data-scarce scenario (MD17): 𝒟 ( = 100, 𝒟 4 = 24, 900
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Direct prediction Derived molecular properties As DFT init

Results: Generalization beyond Labeled Data
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𝐇(0)

• Out-of-distribution (OOD) scenario (QH9)
labeled small molecules + finetune on unlabeled large molecules ➔ test on large molecules

𝒟&'34)

pretrain

finetune

Results: Generalization beyond Labeled Data
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• Data-scarce scenario (MD17): 𝒟 ( = 100, 𝒟 4 = 24900

accuracy-cost (computation time) curve 

Results: Training Efficiency by Amortization

ℒ31.45678 on 
unlabeled 

Label the unlabeled 
then ℒ./01.

Label the unlabeled 
while ℒ./01.



22

Results: Amortization of DFT 

accuracy-cost (effective SCF iterations) curve 

ℒ31.45678 on 
unlabeled 

Label the unlabeled 
then ℒ./01.

Label the unlabeled 
while ℒ./01.

• Data-scarce scenario (MD17): 𝒟 ( = 100, 𝒟 4 = 24900
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Results: Amortization of DFT 

accuracy-cost (computation time) curve 

• OOD scenario (QH9)
labeled small molecules + finetune on unlabeled large molecules ➔ test on large molecules
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Results: Amortization of DFT 

• OOD scenario (QH9)
labeled small molecules + finetune on unlabeled large molecules ➔ test on large molecules

Final performance: self-consistency training gives better derived molecular properties!
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Results: Amortization of DFT 

• Direct acceleration over DFT calculation
• Self-consistency training time vs. DFT computation time 

to reach the same level of electronic energy accuracy 
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Results: Extending Applicable Scale of Hamiltonian Prediction

• Labeled QM9 (≤ 31atoms)+Finetune on unlabeled larger molecules à test on MD22 
(ALA3: 42 atoms, DHA: 56 atoms)
o vs. zero-shot generalization 
o vs. SOTA end-to-end property predictors 
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• QM9 (≤ 31atoms) à MD22 (ALA3: 42 atoms, DHA: 56 atoms)
o vs. zero-shot generalization 
o vs. SOTA end-to-end property predictors 
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Results: Extending Applicable Scale of Hamiltonian Prediction
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