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Summary

We introduce FlowMM, a pair of generative models for Crystal Structure Prediction (CSP) and De Novo
Generation (DNG) that each jointly estimate symmetric distributions over fractional atomic coordinates and
the unit cell (along with atomic types for DNG) in a single framework based on Riemannian Flow Matching.
We train a Continuous Normalizing Flow with a finite time evolution and produce high-quality samples, as
measured by standard metrics and thermodynamic stability, with significantly fewer integration steps than
diffusion models. Our main contributions include:

i)We generalize Riemannian Flow Matching to estimate a point cloud density that is invariant to
translation with periodic boundary conditions, a novel achievement for continuous normalizing flows,
by proposing a new objective. With this step, it becomes possible to enforce isometric invariances inherent
to the geometry of crystals as an inductive bias in the generative model.

ii)We select a rotation invariant representation of the unit cell and choose a natural base distribution
that samples plausible unit cells by design. We find that this drastically simplifies fitting the lattice
compared with a normal base distribution.

iii)We choose a binary representation for the atom types that drastically reduces the dimensionality
compared with the simplex (one-hot). Our representation is ⌈log2(100)⌉ = 7 dimensions per atom, while
the simplex requires 100 dimensions per atom. (Note that ⌈·⌉ denotes the ceiling function.)

iv)We compare our method to diffusion model baselines with extensive experiments on two realistic
datasets and two simplified unit tests. Some of our results were state-of-the art at time of submission.

Preliminaries

We review normalizing flows on manifolds of plausible materials that carry several symmetry properties.

Crystal representation

We represent a crystal c := (a,f , l) as a tuple of atomic types, fractional coordinates, and unit cell.

Atom types a ∈ A can be represented as either a tuple of n (a) h-dimensional one-hot vectors or (b) a
{−1, 1}-bit representation of length ⌈log2 h⌉. We choose (a) for CSP and (b) for DNG.

Lattice parameters l ∈ L are a rotation invariant representation of the unit cell as a 6-tuple of three side
lengths a, b, c ∈ R+ with units of Å and three internal angles α, β, γ ∈ [60◦, 120◦] in degrees.

Fractional coordinates f ∈ F = [0, 1)3×n are a representation of the motif of atoms inside the unit cell.
One can recover the Cartesian coordinates x within the unit cell with a matrix representation of the unit
cell l̃ and x = l̃f . The volume of a unit cell Vol(l̃) := |det l̃| must be nonzero, implying that l̃ is invertible.

Flow Matching on Manifolds

We are interested in working with flat, smooth, connected Riemannian manifolds M that “wrap-around.”

Every m ∈ M has an associated tangent space TmM with an inner product ⟨u, v⟩ for u, v ∈ TmM. These
define minimum length curves (geodesics). Time-dependent vector fields on the manifold ut ∈ U assign a
vector to every time and point in the tangent bundle. We learn distributions by estimating elements of U .

Probability densities on M are continuous functions p : M → R+ where
∫
M p(m) dm = 1 and p ∈ P . We

create new probability densities from existing ones by transforming them with a flow ψt : [0, 1]×M → M, a
time-dependent diffeomorphism solving: d

dtψt(m) = ut(ψt(m)), with initial conditions ψ0(m) = m0 and ut ∈
U . Continuous Normalizing Flows estimate the ut that pushes base density p0 forward to target density p1.

Fitting a vector field vθt ∈ U with parameters θ requires regression on conditional vector fields ut that are
known a priori to generate pt, on average. This is known as Flow Matching. The relevant objective is:

L(θ) = Et,p1(m1),pt(m|m1)∥v
θ
t (m)− ut(m | m1)∥2,

where the ∥·∥ norm is induced by inner product ⟨·, ·⟩ on TmM and t ∼ Uniform(0, 1). At optimum, vθt
pushes p0 forward to p1. At inference, we sample p and propagate t from 0 to 1 using our estimated vθt .
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Hypothetical Flow Matching regression target for lattice parameters (length & angles). The target is

rotation and translation invariant. We chose (and ablated) custom base distributions for flow

matching, and transformed the bounded target into “unconstrained space” using the logit function.

Lattice Parameters with Bespoke Base Distribution

Lattice parameters define a parallelepiped and are
invariant to rotation. We select a positive base dis-
tribution (exponential) for lengths R+3, fit with maxi-
mum likelihood. The angles [60, 120]3 often lie on the
boundary. We send the boundaries to infinity with φ.

logit(ξ) := log
ξ

1− ξ
, φ(η) := logit

(
η − 60

120

)
,

S(ξ′) =
exp(ξ′)

1 + exp(ξ′)
, φ−1(η′) = 120S (η′) + 60,

Generalized Riemannian Flow Matching for Point Clouds in Periodic Boundary Conditions

The supervision are conditional geodesic paths ter-
minating at the target sample using the atom wise
application of the log and exp maps.

That produces an equivariant–not invariant–target
conditional vector field of

− logf1(f )

1−t . We remove the
average torus translation from f 1 to f , or “drift.”

expf i(ḟ
i) := f i + ḟ i − ⌊f i + ḟ i⌋

logf i0(f
i
1) :=

1

2π
atan2

[
sin(ωi), cos(ωi)

]
ωi := 2π(f i1 − f i0)

(ours)uFt (f | f 1) := logf 1
(f )− 1

n

n∑
i=1

logf i1(f
i)

Analog Bits for Atom Types

In CSP, the atomic types are only conditional in-
formation and may be considered a tuple of n, h-
dimensional one-hot vectors. No density estimated.

In DNG, we learn a distribution over a categorical,
binarized representation with length ⌈log2 h⌉. The
targets are made continuous and scaled and shifted
to {−1., 1.}⌈log2 h⌉. The flow transforms a multidimen-
sional normal distribution to a continuous target vec-
tor. At inference time, estimates are discretized with
sign : R → {−1, 1}. When ⌈log2 h⌉ ≠ log2 h, we end
up with “unused bits”. We find that the model is able
to learn to ignore these extra atom types in practice.

Neural Network
Our estimator and objec-
tive are invariant to:

• Rotation the unit cell.

• Translation of coordi-
nates within unit cell.

• Permutation of index.
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Edge features:

• Geodesic vec: SinusoidalEmbedding
(
logf i(f

j)
)

• Cosine of the angles between the Cartesian edge

between atoms and the three lattice vectors l̃
T
l̃f

∥l̃T l̃f∥

Generating Stable Crystals

We want to generate crystals that are stable. Naively,
stability is determined by a thermodynamic competi-
tion between a structure and competing alternatives.
The known stable structures define a convex hull
of stable compositions over the energy landscape.
Structures extremely close to the hull, i.e. within
Em := 0.08 eV/atom, we call metastable.

We determine the energy using a first-principles
quantum mechanical method called density func-
tional theory, which estimates the energy based on
the electronic structure. Specifically, we use the de-
fault settings of the Materials Project (MP). Our con-
vex hull references the MP database February 2023.

An explanation of the material composition convex hull.

Credit: Nate Gruver, et. al. Fine-Tuned Language Models... 2024.

Crystal Structure Prediction

CSP aims to predict the distribution of metastable
structures for given composition q(f , l;a). Dataset:{

f ′ ∈ F , l′ ∈ L | E(ai,f ′, l′) < Em
}
.

Em is fixed by metastability, E is the single point
energy prediction of density functional theory, ai is
the ith composition in the dataset.

Match Rate: The percentage of held-out data where
StrutureMatcher(c, c′) returns a match (given only
one FlowMM sample c′ ∼ p(f , l | a)).
RMSE : average RMS dist. on matching samples.

Match rate as a function of number of integration steps on MP-20. FlowMM

achieves a high maximum match rate and does so 450 steps earlier.

Results from crystal structure prediction on unit tests and realistic data sets.

Perov-5 Carbon-24 MP-20 MPTS-52
Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓

CDVAE 45.31 0.1138 17.09 0.2969 33.90 0.1045 5.34 0.2106
DiffCSP 52.02 0.0760 17.54 0.2759 51.49 0.0631 12.19 0.1786
FlowMM 53.15 0.0992 23.47 0.4122 61.39 0.0566 17.54 0.1726

De Novo Generation
A goal of materials science is to dis-
cover stable and novel crystals. DNG
aims to sample directly from a distribution
of metastable materials q(c), generating
structure f , l and composition a. Dataset
consist of metastable crystals:

ak,f k, lk := ck ∈ {c′ ∈ C | E(c′) < Em} .

Compared with other methods, FlowMM
accurately estimates the atomic density
and the number of unique elements per
crystal (N -ary / Nel). It also produces sta-
ble crystals with fewer integration steps.
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Histogram of DFT relaxed Ehull for DiffCSP, CDVAE,

and FlowMM. After relaxation on for all models,

FlowMM generates lower energy structures compared

to CDVAE and is competitive with DiffCSP.
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Histogram of N -ary / Nel for

the MP-20 distribution and the

generative models. Compared

to FlowMM, CDVAE and

DiffCSP generate too many

materials with N -ary ≥ 5.

Results from De Novo generation on the MP-20 dataset.
Method Integration Validity (%) ↑ Coverage (%) ↑ Property ↓ Stability Rate† (%) ↑ Cost ↓ S.U.N. Rate ↑ S.U.N. Cost ↓

Steps Structural Composition Recall Precision wdist (ρ) wdist (Nel) MP-2023 Steps/Stable† MP-2023 Steps/S.U.N.

CDVAE 5000 100.00 86.70 99.15 99.49 0.688 0.278 1.57 31.85 1.43 34.97
DiffCSP 1000 100.00 83.25 99.71 99.76 0.350 0.125 5.06 1.98 3.34 2.99

FlowMM

250 96.58 83.47 99.48 99.65 0.261 0.107 4.32 0.58 2.38 1.05
500 96.86 83.24 99.38 99.63 0.075 0.079 4.19 1.19 2.45 2.04
750 96.78 83.08 99.64 99.63 0.281 0.097 4.14 1.81 2.22 3.38
1000 96.85 83.19 99.49 99.58 0.239 0.083 4.65 2.15 2.34 4.27

Stable† impliesEhull < 0.0& N -ary ≥ 2.


