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Key Insights

Are Simple Baselines Better than SOTA?

The current state of machine learning scholarship in Timeseries Anomaly Detection

(TAD) is plagued by the persistent use of:

- Simpler methods not only rival but often surpass the performance of complex,
state-of-the-art methods.

Simple baselines perform on par or better compared to state of the art methods.
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We've set simple baselines that challenge the necessity of complexity in state-of-the- comparisons; use of different subsets of sensors of the dataset, use of flawed

art models. evaluation protocol, different pre/post processing.
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We discover that stripping the large neural network methods to a single layer and

| T , ground truth corrects the prediction for a whole anomaly interval based on a single
single building block suffices to achieve comparable performance.

hit. Random prediction can achieve a high score under this evaluation.

Single block MLPMixer 0.780 0.770 0.497 0.500
Single Transformer block 0.787 0.772 0.534 0.521
1-Layer GCN-LSTM 0.829 0./794 0.596 0.587
TranAD 0.799 0.800 0.511 0.57/2
GDN 0.810 0.808 0.571 0.543

Orig: original model Line: linear approximated mode

- F'1 score range-wise: Time series range-wise metrics, capture the quality of

- 1-Layer MLP |
anomaly interval coverage.

- Single block MLP Mixer

- Single Transformer block
- 1-Layer GCN-LSTM block

Standard point-wise metrics also have their own issues and should be complemented
with range-wise metrics.

Quo Vadis?
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Top: A random prediction with an almost perfect F'1p4 score Bottom: A prediction which captures only the long anomaly with a very high
point-wise F1 score
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Proposed simple neural-network baselines

complicated solutions.

Code: https./Zgithub.com/ssarfraz/QuoVadisTAD
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