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Motivating applications 2

present an item

click or

Product recommendation Materials discovery with 
Bayesian optimization

Common challenge: Efficient exploration!



The contextual bandit problem
For 


• (Optional) Observe a context  


• Take an action 


• Observe feedback (reward) 

t = 1,…, T
ct ∈ 𝒞

at ∈ 𝒜
yt
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user information

item

click ∈ {0,1}

Product recommendation Bayesian optimization

N/A

point/experiment

evaluation/measurement

-sub-Gaussian noise (zero-mean)σ2
*

unknown parameter 
( -dimensional)d

known feature map

(can be extended to kernels)

Assumption:

maximize  ∑T
t=1 ytGoal:

yt = f*t (at) + ηt

find  with largest a ∈ 𝒜 𝔼yt

f*t (at) = ⟨θ*, ϕ(at, ct)⟩



Theoretical performance measure: Regret 4

RegretT =
T

∑
t=1

max
a

f*t (a) − f*t (at)

oracle’s mean reward algorithm’s mean reward

Average regret = 
RegretT

T
≤

σ*d

T
For Bayesian optimization,

Optimal worst-case regret:            (Dani et al., 2008)σ*d T

convergence rate  
to the oracle’s performance!

convergence rate  
to the maximum!

exists  s.t.   t ∈ {1,…, T} max
a

f*(a) − f*(at) ≤
σ*d

T



Key weakness of prior work 5

Weakness 2: Assumes the noise level is the same throughout.

⇒ can we attain  ?d ∑T
t=1 σ2

t

We made significant progress!

Weakness 1: Requires knowledge of  (or its upper bound)σ*

In practice, usually not true; i.e., .σ1 ≠ σ2 ≠ ⋯ ≠ σT

In practice,  is not known ⇒ We need to guess it by .σ2
* σ2

0

Over-specification:    ⇒   regretσ2
0 ≥ σ2

* ≤ σ0d T
Under-specification:    ⇒   regretσ2

0 ≤ σ2
* = Θ(T)

If    , then far from  !σ* ≪ σ0 σ*d T

Jun and Kim, “Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization,” ICML’24

If , then  
Tmax

t=1
σ2

t ≤ σ2
0 σ0d T = d ∑T

t=1 σ2
0



Contribution 1: Sub-Gaussian noise
• Novel algorithm LOSAN (Linear Optimism with Semi-Adaptivity to Noise)


• : actual noise level.


• : specified noise level ( ).

σ*

σ0 σ0 ≥ σ*
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OFUL

[Abbasi-Yadkori+11]

LOSAN

(Ours) (σ* d+σ0) ⋅ dT

σ0 d ⋅ dT

when σ* = 0

σ0 d ⋅ dT

σ0 ⋅ dT

dK + d2

LOSAN is the first noise-adaptive algorithm for sub-Gaussian noise!

regret bound

if , then 4.5x faster convergence!d = 20



Contribution 2: Bounded noise
• Novel algorithm LOFAV (Linear Optimism with Full Adaptivity to Variance)


•  for some known R; noise variance at time t is  (unknown)|ηt | ≤ R σ2
t
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*i.e., assume that the noise cannot be a function of the chosen action

LOFAV is the first practical variance-adaptive algorithm!

VOFUL

[Zhang+21]

LOFAV

(Ours)

d4.5 R2+ ∑T
t=1 σ2

t

no additional  
technical 

assumption*
time complexity  

per round

d2K log(T )

SAVE

[Zhao+23]

VOFUL2

[KimJ+22]

OFUL

[Abbasi-Yadkori+11] Rd T d2K

d1.5 R2+ ∑T
t=1 σ2

t

  (optimal)d R2+ ∑T
t=1 σ2

t

  (optimal)d R2+ ∑T
t=1 σ2

t

✔

✗

✔

✔

✔

uses  
all samples 
for learning

d2K log(T )

ed

ed

✔

✗

✔

✔

✔

(K: number of actions)



Numerical results: Sub-Gaussian noise
• Optimizing benchmark functions


• Over-specified setting: 

• Linear model with random Fourier features (d=128) to mock Gaussian kernel.

• BayesOpt (EI/UCB): Bayesian optimization package BayesO

σ* = 0.01, σ0 = 1
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Numerical results: Bounded noise
• Optimizing benchmark functions


• Noise bound: ,  Noise variance: 

• Linear model with random Fourier features (d=128) to mock Gaussian kernel.

• BayesOpt (EI/UCB): Bayesian optimization package BayesO

R = 1 σ2
t = (0.01)2
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Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)
• Optimistic strategy = use upper confidence bound (UCB) [Agrawal’95]

• At time t=1,…,T,


• Choose action         at = arg max
a∈𝒜

UCBt(a)

10

∥v∥A := v⊤Av

Vt−1 := λI +
t−1

∑
s=1

ϕ(as, cs)ϕ(as, cs)⊤

radiusridge regression

We improved this!

confidence set: 𝒞t−1 = {θ : 1
2 ∥θ − ̂θt−1∥2

Vt−1
≤ βt−1}

 has a closed form expression!UCBt(a)

where      UCBt(a) = max
θ∈𝒞t−1

⟨θ, ϕ(a, ct)⟩



Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)

• 


• OFUL:       


• LOSAN:    


• For technical reasons, we turn to weighted ridge regression [Zhao+23]

xs := ϕ(as, cs)
βt ≈ dσ2

0

βt ≈ σ2
0+ ∑t−1

s=1 (x⊤
s

̂θs−1 − ys)2∥xs∥2
V−1

s
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If , then ̂θs−1 ≈ θ* 𝔼[(x⊤
s θ* − ys)2] ≤ σ2

*

∑t−1
s=1 (x⊤

s
̂θs−1 − ys)2∥xs∥2

V−1
s

⪅ σ2
* ∑t−1

s=1 ∥xs∥2
V−1

s

       by elliptical potential lemma⪅ σ2
*d

⪅ σ2
0 + dσ2

*

̂θt = min
θ

t

∑
s=1

w2
s (x⊤

s θ − ys)2 + λ∥θ∥2
2      where      w2

s = min 1,
1

∥xs∥2
V−1

s−1



Main result 12

Theorem 1.  1 − δ ≤ ℙ(∀t, θ* ∈ 𝒞t)

Confidence set: 𝒞t = {θ : 1
2 ∥θ − ̂θt∥2

Σt
≤ βt :=

λ
2

S2+
t

∑
s=1

1
2 (x⊤

s
̂θs−1 − ys)2∥xs∥2

Σ−1
s

+σ2
0 log(1/δ)}

Σt := λI +
t

∑
s=1

w2
s xsx⊤

s

Theorem 2.  1 − δ ≤ ℙ (∀t,
t

∑
s=1

1
2 (x⊤

s
̂θs−1 − ys)2∥xs∥2

Σ−1
s

= Õ(λS2 + dσ2
* + σ2

0))

Proof of Theorem 1: 
“Regret equality” from online learning + martingale concentration

Theorem 3.  LOSAN satisfies    with high probability.RegretT = Õ (( dσ* + σ0) dT)

∥θ*∥ ≤ S



Proof of confidence set 13

Step 1: “Regret equality” from FTRL (Follow The Regularized Leader)

        // with high probability

                                 (proven next slide)
≤ σ2

* ln(1/δ)
negative (online learning) regret

 ̂θt : weighted estimator, Σt := λI +
t

∑
s=1

w2
s xsx⊤

s , fs(θ) :=
1
2

w2
s (x⊤

s θ − ys)2

⟺
1
2

∥ ̂θt − θ*∥2
Σt

=
λ
2

∥θ*∥2 +
t

∑
s=1

fs( ̂θs−1)∥wsxs∥2
Σ−1

s
+

t

∑
s=1

fs(θ*) − fs( ̂θs−1)

t

∑
s=1

fs( ̂θs−1) − fs(θ*) =
λ
2

∥θ*∥2 +
t

∑
s=1

fs( ̂θs−1)∥wsxs∥2
Σ−1

s
−

1
2

∥ ̂θt − θ*∥2
Σt

≤ S2 ≤ σ2
0 ln(1/δ)Step 2: Bound with known quantities

usually, throw it away except for 
                         [Dekel+10]



Proof of confidence set 14

 ,   ̂θt : weighted estimator, Σt := λI +
t

∑
s=1

w2
s xsx⊤

s , fs(θ) :=
1
2

w2
s (x⊤

s θ − ys)2 ys = x⊤
s θ*+ηs

t

∑
s=1

fs(θ*) − fs( ̂θs−1) = ⋯ =
t

∑
s=1

rs ⋅ wsηs −
1
2

t

∑
s=1

r2
s where rs = ws ⋅ x⊤

s ( ̂θs−1 − θ*)

(i) Ville’s inequality 
(ii) ws ≤ 1

w.p.   by≥ 1 − δ

by choosing    a =
1
σ2

*

≤
1
a

ln(1/δ) +
a
2

t

∑
s=1

r2
s σ2

*

≤ σ2
* ln(1/δ) +

1
2

t

∑
s=1

r2
s

≤ σ2
* ln(1/δ)



Confidence sets via online learning (OL) 15

requires  
OL regret bound 
for construction

requires  
running the OL 

algorithm

requires 


in OL regret bound

−
1
2

∥ ̂θt − θ*∥2
Σt

Y

Y

Y

Y

YY

N

N N

DGS style 
[DekelGS’10, ZhangYJXZ’16, ours]

online-to-confidence-set conversion  
[Abbasi-YadkoriPS’12, JunBWN’17]

regret-to-confidence set conversion

(for the MLE) 
[RakhlinS’17, OrabonaJ’24, LeeYJ’24]

Can use computationally 
intractable OL algorithms

(N is preferred)

YN Nsequential likelihood ratio 
[Robbins’72, EmmeneggerMK’23]

This also motivates our confidence set! 
(a blog article being prepared)



Algorithm: LOFAV (Linear Optimism with Full Adaptivity to Variance)

• Still optimism, but  different UCBs





• : by an ellipsoid centered at the weighted ridge regression 

         

L = log2(T)

UCBt(a) =
L

min
ℓ=1

UCBt,ℓ(a)

UCBt,ℓ(a)

̂θt,ℓ = min
θ

t

∑
s=1

w2
s,ℓ(x⊤

s θ − ys)2 + λℓ∥θ∥2
2      where      w2

s,ℓ = min 1,
2−2ℓ

∥xs∥2
Σ−1

s−1,ℓ

16

t

confidence 
width

ℓ = 1

ℓ = 2
ℓ = 3
ℓ = 4

     ideal width: complex & data-dependent 

: close approximationmin

ℓ
UCBℓ(x)



Algorithm: LOFAV (Linear Optimism with Full Adaptivity to Variance)

• Still optimism, but  different UCBs





• : by an ellipsoid centered at the weighted ridge regression 

         

L = log2(T)

UCBt(a) =
L

min
ℓ=1

UCBt,ℓ(a)

UCBt,ℓ(a)

̂θt,ℓ = min
θ

t

∑
s=1

w2
s,ℓ(x⊤

s θ − ys)2 + λℓ∥θ∥2
2      where      w2

s,ℓ = min 1,
2−2ℓ

∥xs∥2
Σ−1

s−1,ℓ
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βt,ℓ = Õ 2−2ℓS2 +
t

∑
s=1

fs,ℓ( ̂θs−1,ℓ)∥xs∥2
Σ−1

s,ℓ
+ 2−ℓ βt−1,ℓ(

t

∑
s=1

fs,ℓ( ̂θs−1,ℓ) + R2) + 2−ℓR βt−1,ℓ

Theorem 5. 1 − δ ≤ ℙ ∀t, ∀ℓ, βt,ℓ = Õ 2−2ℓ (R2 +
t

∑
s=1

σ2
s )

Theorem 4. 1 − δ ≤ ℙ(∀t, ∀ℓ, θ* ∈ 𝒞t,ℓ)



Comparison with SAVE [Zhao+23]
18

Improvement 1: Avoids sample splitting

Improvement 2: Tightened confidence set (via regret equality based analysis)

SAVE’s confidence set

Our confidence set

SAVE is based on SupLinRel [Auer’02] ⇒ Sample splitting kills the performance.



LOFAV regret bound 19

Theorem 6.  LOFAV satisfies    with high probability.RegretT = Õ (d R2+ ∑T
t=1 σ2

t )
Proof.


Peeling-based  
regret analysis 
[He’21, KimYJ’22]

RegretT =
T

∑
t=1

regt

≤
T

∑
t=1

L

∑
ℓ=1

regt ⋅ I {2−2ℓ β*T ≤ regt ≤ 2−2(ℓ−1) β*T } + T ⋅ 2−L

≤
L

∑
ℓ=1

β*T 2−2(ℓ−1)
T

∑
t=1

I{2−2ℓ β*T ≤ regt} + T ⋅ 2−L

bound       

by elliptical potential ‘count’ lemma [LattimoreS’20, GalesSJ’22]

∑T
t=1 I{∥wt,ℓxt∥Σ−1

t−1,ℓ
≥ 2−ℓ} ≤ O(22ℓd)

(say )regt ≤ 1

( )β*T = R2 +
t

∑
s=1

σ2
s

⟹ ⋯ ⟹ ∥wt,ℓxt∥Σ−1
t−1,ℓ

≥ 2−ℓ



Conclusion
• Sub-Gaussian noise: (semi-)adaptivity to the noise level 

• Bounded noise: adaptivity to unknown time-varying variance


• Proofs

• From regret equality to confidence set

• Peeling based regret analysis + elliptical potential “count” lemma


• Future work

• How far can we push noise adaptivity to general function class? (second order bound)

• Algorithms beyond optimism: expected improvement, information directed sampling, etc.

20


