Noise-Adaptive Confidence Sets for Linear Bandits

Kwang-Sung Jun Assistant Professor

> THE UNIVERSITY OF ARIZONA

Joint work with

Jungtaek Kim Postdoc University of Pittsburgh

ICML'24

Motivating applications

Common challenge: Efficient exploration!

The contextual bandit problem

For $t = 1,, T$		Product recommendation	Bayesian optimization
• (Optional) Observe a context $c_t \in \mathscr{C}$		user information	N/A
• Take an action $a_t \in \mathscr{A}$		item	point/experiment
• Observe feedback (reward) y_t		click $\in \{0,1\}$	evaluation/measurement
	Goal:	maximize $\sum_{t=1}^{T} y_t$	find $a \in \mathscr{A}$ with largest $\mathbb{E}y_t$
Assumption:	$y_t = f_t^*(a_t) + \eta_t$ σ_*^2 -sub-Gaussian noise (zero-mean)		
	$f_t^*(a_t) = \langle \theta^*, \phi(a_t, c_t) \rangle$) \rangle (can be extended to	o kernels)
	unknown parameter (<i>d</i> -dimensional)	known feature map	

Theoretical performance measure: Regret

Key weakness of prior work

<u>Weakness 1</u>: Requires knowledge of σ_* (or its upper bound) In practice, σ_*^2 is <u>not known</u> \Rightarrow We need to <u>guess</u> it by σ_0^2 .

> Under-specification: $\sigma_0^2 \leq \sigma_*^2 \Rightarrow \text{ regret} = \Theta(T)$ Over-specification: $\sigma_0^2 \geq \sigma_*^2 \Rightarrow \text{ regret} \leq \sigma_0 d\sqrt{T} \leq \text{ If } \sigma_* \ll \sigma_0$, then far from $\sigma_* d\sqrt{T}$!

Weakness 2: Assumes the noise level is the same throughout.

In practice, usually not true; i.e., $\sigma_1 \neq \sigma_2 \neq \cdots \neq \sigma_T$.

If
$$\max_{t=1}^{T} \sigma_t^2 \le \sigma_0^2$$
, then $\sigma_0 d\sqrt{T} = d\sqrt{\sum_{t=1}^{T} \sigma_0^2} \implies \text{can we attain } d\sqrt{\sum_{t=1}^{T} \sigma_t^2}$?
We made significant progress!

Jun and Kim, "Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization," ICML'24

Contribution 1: Sub-Gaussian noise

- Novel algorithm **LOSAN** (Linear Optimism with Semi-Adaptivity to Noise)
- σ_* : actual noise level.
- σ_0 : specified noise level ($\sigma_0 \ge \sigma_*$).

if d = 20, then 4.5x faster convergence!

LOSAN is the first noise-adaptive algorithm for sub-Gaussian noise!

Contribution 2: Bounded noise

- Novel algorithm **LOFAV** (Linear Optimism with Full Adaptivity to Variance)
- $|\eta_t| \leq R$ for some known R; noise variance at time t is σ_t^2 (unknown)

LOFAV is the first practical variance-adaptive algorithm!

*i.e., assume that the noise cannot be a function of the chosen action

Numerical results: Sub-Gaussian noise

- Optimizing benchmark functions
- Over-specified setting: $\sigma_* = 0.01, \sigma_0 = 1$
- Linear model with random Fourier features (d=128) to mock Gaussian kernel.
- BayesOpt (EI/UCB): Bayesian optimization package BayesO

Numerical results: Bounded noise

- Optimizing benchmark functions
- Noise bound: R = 1, Noise variance: $\sigma_t^2 = (0.01)^2$
- Linear model with random Fourier features (d=128) to mock Gaussian kernel.
- BayesOpt (EI/UCB): Bayesian optimization package BayesO

Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)¹⁰

- Optimistic strategy = use upper confidence bound (UCB) [Agrawal'95]
- At time t=1,...,T,

 $UCB_t(a)$ has a closed form expression!

Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)¹¹

- $x_s := \phi(a_s, c_s)$
- OFUL: $\beta_t \approx d\sigma_0^2$
- LOSAN: $\beta_t \approx \sigma_0^2 + \sum_{s=1}^{t-1} (\underline{x}_s^\top \hat{\theta}_{s-1} \underline{y}_s)^2 ||x_s||_{V_s^{-1}}^2$ $|f \hat{\theta}_{s-1} \approx \theta^*, \text{ then } \mathbb{E}[(x_s^\top \theta^* \underline{y}_s)^2] \le \sigma_*^2$ $\sum_{s=1}^{t-1} (x_s^\top \hat{\theta}_{s-1} \underline{y}_s)^2 ||x_s||_{V_s^{-1}}^2 \lesssim \sigma_*^2 \sum_{s=1}^{t-1} ||x_s||_{V_s^{-1}}^2$ $\lesssim \sigma_*^2 d \quad \text{by elliptical potential lemma}$
- For technical reasons, we turn to weighted ridge regression [Zhao+23]

$$\hat{\theta}_{t} = \min_{\theta} \sum_{s=1}^{t} w_{s}^{2} (x_{s}^{\top}\theta - y_{s})^{2} + \lambda \|\theta\|_{2}^{2} \quad \text{where} \quad w_{s}^{2} = \min\left\{1, \frac{1}{\|x_{s}\|_{V_{s-1}^{-1}}^{2}}\right\}$$

Main result

Proof of Theorem 1: "Regret equality" from online learning + martingale concentration

Proof of confidence set

$$\hat{\theta}_t : \text{weighted estimator, } \Sigma_t := \lambda I + \sum_{s=1}^t w_s^2 x_s x_s^\top, \quad f_s(\theta) := \frac{1}{2} w_s^2 (x_s^\top \theta - y_s)^2$$

<u>Step 1</u>: "Regret equality" from FTRL (Follow The Regularized Leader)

 $\sum_{s=1}^{t} f_{s}(\hat{\theta}_{s-1}) - f_{s}(\theta^{*}) = \frac{\lambda}{2} \|\theta^{*}\|^{2} + \sum_{s=1}^{t} f_{s}(\hat{\theta}_{s-1}) \|w_{s}x_{s}\|_{\Sigma_{s}^{-1}}^{2} - \frac{1}{2} \|\hat{\theta}_{t} - \theta^{*}\|_{\Sigma_{t}}^{2}$ (usually, throw it away except for usually, throw it away except for [Dekel+10]] $\iff \frac{1}{2} \|\hat{\theta}_{t} - \theta^{*}\|_{\Sigma_{t}}^{2} = \frac{\lambda}{2} \|\theta^{*}\|^{2} + \sum_{s=1}^{t} f_{s}(\hat{\theta}_{s-1}) \|w_{s}x_{s}\|_{\Sigma_{s}^{-1}}^{2} + \sum_{s=1}^{t} f_{s}(\theta^{*}) - f_{s}(\hat{\theta}_{s-1})$ (Dekel+10] (negative (online learning) regret) $\leq \sigma_*^2 \ln(1/\delta)$ // with high probability (proven next slide) $\leq \sigma_0^2 \ln(1/\delta)$ $< S^{2}$ **Step 2**: Bound with known quantities

Proof of confidence set

$$\hat{\theta}_{t} : \text{ weighted estimator, } \Sigma_{t} := \lambda I + \sum_{s=1}^{t} w_{s}^{2} x_{s} x_{s}^{\mathsf{T}}, \quad f_{s}(\theta) := \frac{1}{2} w_{s}^{2} (x_{s}^{\mathsf{T}}\theta - y_{s})^{2}, \quad y_{s} = x_{s}^{\mathsf{T}}\theta^{*} + \eta_{s}$$

$$\sum_{s=1}^{t} f_{s}(\theta^{*}) - f_{s}(\hat{\theta}_{s-1}) = \cdots = \sum_{s=1}^{t} r_{s} \cdot w_{s} \eta_{s} - \frac{1}{2} \sum_{s=1}^{t} r_{s}^{2} \qquad \text{where } r_{s} = w_{s} \cdot x_{s}^{\mathsf{T}}(\hat{\theta}_{s-1} - \theta^{*})$$

$$\leq \frac{1}{a} \ln(1/\delta) + \frac{a}{2} \sum_{s=1}^{t} r_{s}^{2} \sigma_{*}^{2} \qquad \text{w.p. } \geq 1 - \delta \text{ by (i) Ville's inequality}$$

$$(i) w_{s} \leq 1$$

$$\leq \sigma_{*}^{2} \ln(1/\delta) + \frac{1}{2} \sum_{s=1}^{t} r_{s}^{2} \qquad \text{by choosing } a = \frac{1}{\sigma_{*}^{2}}$$

Confidence sets via online learning (OL)

	requires $-\frac{1}{2} \ \hat{\theta}_t - \theta^*\ _{\Sigma_t}^2$ in OL regret bound	requires OL <u>regret bound</u> for construction	requires <u>running</u> the OL algorithm
DGS style [DekelGS'10, ZhangYJXZ'16, ours]	Y	Y	Y
online-to-confidence-set conversion [Abbasi-YadkoriPS'12, <u>Jun</u> BWN'17]	Ν	Y	Y
regret-to-confidence set conversion (for the MLE) [RakhlinS'17, Orabona <u>J</u> '24, LeeY <u>J</u> '24]	Ν	Y	N Can use computationally <u>intractable</u> OL algorithms
sequential likelihood ratio	Ν	Ν	Y
[KODDINS' / 2, EmmeneggerIVIK'23]	This also motiv (a blog arti	ates our confidence set! icle being prepared)	

(**N** is preferred)

Algorithm: LOFAV (Linear Optimism with Full Adaptivity to Variance)⁶

• Still optimism, but $L = \log_2(T)$ different UCBs

$$UCB_t(a) = \min_{\ell=1}^{L} UCB_{t,\ell}(a)$$

• UCB_{*t*, ℓ (*a*): by an <u>ellipsoid</u> centered at the <u>weighted ridge regression</u>}

$$\hat{\theta}_{t,\ell} = \min_{\theta} \sum_{s=1}^{t} w_{s,\ell}^2 (x_s^\top \theta - y_s)^2 + \lambda_{\ell} ||\theta||_2^2 \quad \text{where} \quad w_{s,\ell}^2 = \min \left\{ 1, \frac{2^{-2\ell}}{||x_s||_{\Sigma_{s-1,\ell}^{-1}}^2} \right\}$$

$$\stackrel{\text{confidence width}}{\underset{width}{}} \quad \stackrel{\text{ideal width: complex & data-dependent}}{\underset{\ell}{\min} \text{UCB}_{\ell}(x): \text{ close approximation}} \right\}$$

$$\ell = 1$$

$$\ell = 2$$

$$\ell = 3$$

$$\ell = 4$$

Algorithm: LOFAV (Linear Optimism with Full Adaptivity to Variance)⁷

• Still optimism, but $L = \log_2(T)$ different UCBs

$$UCB_t(a) = \min_{\ell=1}^{L} UCB_{t,\ell}(a)$$

• UCB_{*t*, ℓ (*a*): by an <u>ellipsoid</u> centered at the <u>weighted ridge regression</u>}

$$\hat{\theta}_{t,\ell} = \min_{\theta} \sum_{s=1}^{t} w_{s,\ell}^{2} (x_{s}^{\top}\theta - y_{s})^{2} + \lambda_{\ell} \|\theta\|_{2}^{2} \quad \text{where} \quad w_{s,\ell}^{2} = \min\left\{1, \frac{2^{-2\ell}}{\|x_{s}\|_{\Sigma_{s-1,\ell}^{-1}}^{2}}\right\}$$
$$\beta_{t,\ell} = \tilde{O}\left(2^{-2\ell}S^{2} + \sum_{s=1}^{t} f_{s,\ell}(\hat{\theta}_{s-1,\ell})\|x_{s}\|_{\Sigma_{s,\ell}^{-1}}^{2} + 2^{-\ell}\sqrt{\beta_{t-1,\ell}}(\sum_{s=1}^{t} f_{s,\ell}(\hat{\theta}_{s-1,\ell}) + R^{2}) + 2^{-\ell}R\sqrt{\beta_{t-1,\ell}}\right)$$

Theorem 4. $1 - \delta \leq \mathbb{P}(\forall t, \forall \ell, \theta^* \in \mathscr{C}_{t,\ell})$

Theorem 5.
$$1 - \delta \leq \mathbb{P}\left(\forall t, \forall \ell, \beta_{t,\ell} = \tilde{O}\left(2^{-2\ell}\left(R^2 + \sum_{s=1}^t \sigma_s^2\right)\right)\right)$$

Comparison with SAVE [Zhao+23]

Improvement 1: Avoids sample splitting

SAVE is based on SupLinRel [Auer'02] \Rightarrow Sample splitting kills the performance.

Improvement 2: Tightened confidence set (via regret equality based analysis)

LOFAV regret bound

Regret_T = $\sum_{r=1}^{T}$ reg.

Theorem 6. LOFAV satisfies $\operatorname{Regret}_{T} = \tilde{O}\left(d\sqrt{R^{2} + \sum_{t=1}^{T} \sigma_{t}^{2}}\right)$ with high probability.

Peeling-based
regret analysis
[He'21, KimYJ'22]
$$Z$$
 Z Z <

Proof

 $(\beta_T^* = R^2 + \sum \sigma_s^2)$

Conclusion

- Sub-Gaussian noise: (semi-)adaptivity to the noise level
- Bounded noise: adaptivity to unknown time-varying variance
- Proofs
 - From regret equality to confidence set
 - Peeling based regret analysis + elliptical potential "count" lemma
- Future work
 - How far can we push noise adaptivity to general function class? (second order bound)
 - Algorithms beyond optimism: <u>expected improvement</u>, <u>information directed sampling</u>, etc.